Production and High Temperature Mechanical Properties of Ti-TiC Composite by Reaction Milling

반응밀링법에 의한 Ti-TiC 복합재료의 제조 및 고온 기계적 특성

  • Published : 1998.10.01

Abstract

This study has been carried out to investigate the effect of reaction milling time on the synthesis of Ti- TiC p powder synthesised from the elemental titanium and activated carbon by reaction milling(RM), and the effect of vacu­u urn hot pressing temperature and TiC volume fraction on microstructural and mechanical properties of Ti- TiC com­p posite $\infty$ns이idated by vacuum hot pressing(VHP).T The elemental powders of titanium and activated carbon can be converted into Ti- TiC composite powders by reac­t tion milling for about 300hours, and were the average grain size of the as- milled powders has been measured to be a about $5\mu\textrm{m}$. The relative density of Ti- TiC VHPed above $1000^{\circ}C$ during Ihr is about 98% and the mechanical properties o of In- situ Ti- TiC composites are improved by TiC particle dispersed uniformly on titanium matrix. In order to investi­g gate thermal stability of Ti- TiC composite, after annealing at $600^{\circ}C$ for 80hrs micro- Vickers hardness have been per­f formed, and the values have been shown little changed as compared with those before annealing. The compact has b been tested on high temperature compressive test at $700^{\circ}C$ and has showed a high temperature compressive strength of 330MPa in a Ti- 20vol% TiC.

본 연구는 티타늄과 활성탄소 원료분말을 반응밀링법에 의해 합성시, 밀링시간에 따른 Ti-TiC 복합재료의 미세조직과 기계적 성질에 미치는 TiC vol.% 및 열간압축성형온도의 영향에 관해 조사하였다. 티타늄과 활성 탄소 원료분말을 300시간 밀링 후 $5\mu\textrm{m}$이하의 미세한 구형의 Ti-TiC복합분말을 생성시킬 수 있었다. 반응밀링된 분말을 $1000^{\circ}C$이상에서 1시간동안 진공열간압축성형한 경우 이론밀도의 98%에 가까운 우수한 성형체를 얻었으며, TiC입자가 티타늄 기지 전반에 걸쳐 고르게 분산되어 Ti-TiC 복합재료의 기계적 특성을 향상시켰다. Ti-TiC복합재료의 고온안정성을 고찰하기 위해 $600^{\circ}C$등온열처리한 결과 80시간까지는 경도의 큰 변화없이 열적으로 안정하였다. Ti-20vol%TiC 복합재료를 $700^{\circ}C$에서 고온압축시험을 한 경우 330MPa의 높은 항복강도값을 나타내었다.

Keywords

References

  1. Advanced Materials & Processes v.7 D.LewisⅢ;M.Singh;S.G.Fishman
  2. Beta Titanium Alloys in the 90's D.Eylon;R.R.Boyer;D.A.Koss
  3. 素形材 v.6 濟卓;古田忠渗
  4. Matall. Trans. A. v.22A M.H.Loretto;D.G.Konitzer
  5. Acta Metall. mater v.37 no.2 D.G.Konitzer;M.H.Loretto
  6. High Temperature Ordered Intermetallic Alloys Ⅲ;Material Research Society Symposia Processing v.83 J.Chen;Z.Geng;B.A.Chin
  7. Metall, Trans. A. v.26A J.Y.Huang;L.L.Ye;Y.K.Wu;H.Q.Ye
  8. J. Mater. Res. v.8 no.12 Yoon Choi;Shi-Woo Rhee
  9. Metall. Trans. A. v.22A Y.Lin;R.H.Zee;B.A.Chin
  10. J. Mater. Sci. v.15 J.D.Verhoven;E.D.Gibson;F.A.Schmit;D.K.Finnemore
  11. Adv. Cry. Eng. v.28 Ostenson;D.K.Finnemore
  12. Appl. Phys. Lett. v.35 R.Flukiger;R.Akihama;S.oner;E.J.McNiff,Jr;B.B.Schwartz
  13. Material Science Forum v.88-90 J.S.Benjamin
  14. Solid State Powder Processing H.Danninger;G.Jangg;J.Zbiral;A.H.Clauser(ed.);J.J.deBarbadillo(ed.)
  15. Mater. Sci. and Eng. v.A131 P.Sahoo;M.J.Koczak
  16. Metall. Trans. A v.27A S.Rangganath;J.Sbrahmanyam
  17. Processing of 2nd Pacific Rim International Conference on Advanced Materials and Processing L.L.Ye;M.X.Quan;K.D.Shin(ed.);J.K.Yoon(ed.);S.J.Kim(ed.)
  18. Metall. Trans. A. v.26A J.Y.Huang;L.L.Ye;Y.K.Wu;H.Q.Ye
  19. Metall. Trans. A v.26A W.Y.Yang;H.C.Yi;A.Petric
  20. Metall. Trans. A v.27A S.Ranganath;J.Subrahmanyam