$Bi_{2}Se_{3}$ 함량에 따른 Bi$_{2}$(Te$_{1-x}$Se$_{ x}$)$_{3}$

Thermoelectric Properties of the Hot-Pressed Bi$_{2}$(Te$_{1-x}$Se$_{ x}$)$_{3}$ Alloys with the $Bi_{2}Se_{3}$ Content

  • 김희정 (홍익대학교 공과대학 금속.재료공학과) ;
  • 오태성 (홍익대학교 공과대학 금속.재료공학과) ;
  • 현도빈 (한국과학기술연구원 금속연구부)
  • Kim, Hee-Jeong (Dept. of Matallurgical Engineering & Materials Science, Hong-Ik Univ.) ;
  • Oh, Tae-Sung (Dept. of Matallurgical Engineering & Materials Science, Hong-Ik Univ.) ;
  • Hyun, Do-Bin (Korea Institute of Science and Technology )
  • 발행 : 1998.05.01

초록

Bi$_{2}$(Te$_{1-x}$Se$_{ x}$)$_{3}$(0.05$\leq$x$\leq$0.25)합금분말을 기계적 합금화 공정으로 제조하여 가압소결 후, $Bi_{2}$Se$_{3}$함량에 따른 열전특성의 변화거동을 분석하였다. 기계적 합금화로 제조한 $ Bi_{2}$(Te$_{1-x}$ $Se_{x}$$_{3}$ 가압소결체는 단결정과는 달리 donor dopant의 첨가없이도 n형 전도를 나타내었다. $Bi_2(Te_{0.85}Se_{0.15})_3$ 합금분말을 (50%H$_{2}$+50% Ar)분위기 중에서 환원처리하여 가압소결시, 분말 효면의 산화층 제거와 과잉 Te 공격자의 소멸에 기인한 전자 농도의 감소로 p형으로 천이되었다. 기계적 합금화로 제조한 $ Bi_{2}$($Te_{1-x}$ $Se_{x}$$_{3}$가압소결체는 x=0.15조성에서 $1.92{\times}10^{-3}$ K의 최대 성능지수를 나타내었다.

Thermoelectric properties of Bi$_{2}$(Te$_{1-x}$Se$_{ x}$)$_{3}$(0.05$\leq$x$\leq$0.25) prepared by mechanical alloying and hot pressing, were investigated. Contrary to the p-type behavior of single crystals, the hot-pressed Bi$_{2}$(Te$_{1-x}$Se$_{ x}$)$_{3}$ exhibited ntype conduction without addition of donor dopant. When $Bi_2(Te_{0.85}Se_{0.15})_3$powders were annealed in (50% $H_2$ + 50% Ar) atmosphere, the hot-pressed specimen exhibited a positive Seebeck coefficient due to the reduction of the electron concentration by removal of the oxide layer on the powder surface and annealing-out of the excess Te vacancies. Among the Bi$_{2}$(Te$_{1-x}$Se$_{ x}$)$_{3}$fabricated by mechanical alloying and hot pressing, $Bi_2(Te_{0.85}Se_{0.15})_3$ exhibited a maximum figure-of-merit of 1.92 $\times$ $lO^{-3}$/K.

키워드

참고문헌

  1. CRC Handbook of Thermoelectrics D.M.Rowe
  2. Bellcore Report TA-TSY-000983 no.Issue 1 Reliability Assurance Practices for Optoelectronic Devices in Loop Application
  3. Proc. 12th Int. Conf. on Thermoelectrics F.Fukuda;A.Onodera;H.Haga
  4. J. Kor. Inst. Met. & Mater. v.35 B.Y.Jung;S.E.Nam;D.B.Hyun;J.D.Shim;T.S.Oh
  5. J. Kor. Inst. Met. & Mater. v.35 H.J.Kim;J.S.Choi;D.B.Hyun;T.S.Oh
  6. Proc. 12th Int. Conf. on Thermoelectrics A.Yanagitani;S.Nishikawa;Y.Kawai;S.Hayashimoto;N.Itoh;T.Kataoka
  7. J. Appl. Phys. v.30 T.C.Harman;J.H.Cahn;M.J.Logan
  8. J. Appl. Phys. v.62 M.S.Kim;C.C.Koch
  9. J. Solid-State Electronics v.15 W.M.Yim;F.D.Rosi
  10. Advanced Energy Conversion v.1 M.R.LaChance;E.E.Gardner
  11. Thermoelectric Refrigeration H.J.Goldsmid
  12. J. Phys. Chem. Solids v.47 J.Horak;K.Cermak;L.Koudelka
  13. J. Appl. Phys. v.33 J.M.Schultz;J.P.McHugh;W.A.Tiller
  14. Inorg.Mater. v.19 D.M.Gel'fgat;Z.M.Dashevskii
  15. Proc. 11th Int. Conf. on Thermoelectrics D.B.Hyun;H.P.Ha;J.D.Shim
  16. CRC Handbook of Thermoelectrics D.M.Rowe
  17. Proc. 8th Int. Conf. on Thermoelectrics Energy Conversion H.Kaibe;M.Sakate;I.J.Ohsugi;I.Nishida
  18. Proc. 14th Int. Conf. on Thermoelectrics G.T.Alekseeva;M.V.Vedernikov;P.P.Konstantinov;V.A.Kutasov;L.V.Luk'yanova
  19. Proc. 7th Int. Conf. on Thermoelectric Energy Conversion H.Imaizumi;H.Yamaguchi;H.Kaibe;I.Nishida
  20. Proc. 12th Int. Conf. on Thermoelectrics K.Nakamura;K.Morikawa;H.Owada;K.Miura;K.Ogawa;I.Nishida
  21. Bellcore Report TA-TSY-000983 no.Issue1 Reliability Assurance Practices for Optoelectronic Devices in Loop Applications