유한차분 시간영역 해석법에 내부전원을 이용한 마이크로스트립 선로 해석에 관한 연구

A Study on the Analysis of the Microstrip Line by Using Inner Source at the FDTD Method

  • 윤성현 (경남정보대학 전자정보통신과) ;
  • 정수길 (경남정보대학 전자정보통신과) ;
  • 손창수 (경남정보대학 전자정보통신과)
  • 발행 : 1998.10.01

초록

유한차분 시간영역 방법을 이용하여 연속 및 불연속 마이크로스트립올 해석할 때 홉수 경계조건은 Berenger의 완전 접합충(Perfectly Matched Layer:PML)올 3차원으로 적용하고, 전원의 인가는 기존의 마이크로스트립 전면(front face)에 인가하는 방법 대신 내부전원(Inner Source Technique:IST)을 이용하였다. 이 방법을 이용하면 de성분의 왜곡이 개선되고, 에베네센트(evanescent) 및 복사 전자계가 존재하는 측면과 윗면의 계산 영역올 줄이더라도 해석된 특성은 신뢰할 수 있는 결과를 얻올 수 있었다. 또한 내부전원의 위치를 조정함으로서 불완전한 경계조건에 의해서 발생되는 반사파의 영향올 효과적으로 제거할 수 있었다. 본 연구에서는 이러한 방법을 이용하여 마이크로스트립의 분산특성 및 특성임피던스를 계산하였다. 그리고 종단개방 마이크로스트립의 산란계수의 크기와 위상올 구하고 그 동가회로를 계산하였다.

When continuous and discontinuous microstrip is analyzed with FDTD(Finite Difference Time Domain) method, we used Berenger's 3D-PML as absorbing boundary condition, and IST(Inner Source Technique) was used for source excitation instead of front excitation that is existing method. In the case using IST, we have observed that analyzed characteristic is not affected by the reduced computational domain of the side and top face in which evanescent field and radiation field is exist. Also, if we control the position of the inner source, we could effectively reject the influence of the reflective wave by mean of imperfective boundary condition. In this paper, by using IST, we have calculated dispersive characteristic and characteristic impedance of the microstrip. And we have calculated magnitude and phase of the scattering coefficient, and obtained equivalent circuit of the open microstrip end.

키워드

참고문헌

  1. IEEE Trans. Microwave Theory Tech. v.MTT-36 Calculation of the dispersive characteristics of microstrips by the time domain finite difference method X. Zang;J. Fang;K. K. Mei;Y. Liu
  2. IEEE Trans. Microwave Theory Tech. v.36 Time-domain-finite-difference approach to the calculation of the frequency-dependent characteristics of mictostrip discontinuities X. Zang;K. K. Mei
  3. IEEE Trans. Electromagn. Compat. v.23 Absorbing boundary conditions for the finite difference approximation of the time domain electromagmetic field equations G. Mur
  4. IEEE Trans. Microwave Theory Tech. v.40 A dispersive boundary condition for microstrip component anaylsis using the FDTD method Z. Bi;K. Wu C. Wu;J. Litva
  5. IEEE Trans Antennas Propaga. v.40 Superabsorbion-A method to improve absorbing boundary conditions K. K. Mei;J. Fang
  6. J. Computational Physics v.114 A perfectly matched layer for the absorption of electromagnetic wave Jean-Pierre Berenger
  7. IEEE Trans. Micro wave Theory Tech. v.43 Numerical implementation and performance of perfectly matched layer boundary condition for waveguide structures Z. Wu;J. Fang
  8. IEEE Trans. Microwave Theory Tech. v.44 Minimization of reflection error caused by absorbing boundary condition in the FDTD simulation of planar transmission lines K. Naishadham;X. P. Lin
  9. IEEE Trans. Microwave Theory Tech. v.44 Parameter extraction and correction for transmission lines and discontinuities using the finite-differnce time domain method M. A. Schamberger;S. Kosanovich;R. Mittra
  10. IEEE trans. Microwave Theory Tech. v.36 no.8 A dispersion formula satisfying recent requirements in microstrip CAD M. Kobayashi
  11. IEEE trans. Microwave Theory Tech. v.33 no.10 Frequency-dependent characteristics of microstrip discontinuites in millimeter-wave integrated circuities P. B. Katehi;N. G. Alexopoulos