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Abstract

Transient acoustic and elastic wave propagation in inhomogeneous media are studied by using the Fourier method. It is

known that the Fourier method has advantages in memory requirements and computing speed over conventional mcthods

such as FDM and FEM, because the Fourier methed needs less grid points for achicving the same accuracy. To verify

the proposed numerical scheme, several examples having analytic solutions are considered, where two different semi-inftnite

media are in contact along a plane boundary. The comparisons of numerical results by the Fourier method and analytic

solutions show good agrcemenis. In addition, the Fourier method is applied to a layered half-plane, in which an elastic

seni-infinite medium is covered by an elastic layer of finite thickness. It is showed how to derive the amalytic solutions

by using the Cagniard-de Hoop method. The numerical solutions are in cxcellent agreements with analytic results.

1. Introduction

Wave propagation in inhomogeneous media has been of
great importance in various fields such as seismology, «xcean
acoustics, geophysical probliems and electromagnetics. Since
analytic solutions are available only on the exceptionally
simple problems, most tealistic problems of complicated
configurations have been studied by using the numerical
methods such as the FEM, FDM, and ray tracing technique.
The FDM is frequently used to simulate the three-dimen-
sional seismic wave propagatlon {1], because the algorithm
of the FDM is siraightforward and suitable for numerical
implementations. However, the numerical simulation of
earthquakes in real structures by FDM requires a large
amount of memories, in which the degrees of frecdom
often exceeds tens of millions. Recently, the Fourter
method (or pseudospectral method) [2,3,4) has gained at-
tentions because it needs relatively small number of grid
points for achieving the same accuracy compared to the
FDM or FEM. The basic idea of the Fourier methed is
that the spatial derivatives are computed by the Fourier
transform (in practice by the FFT), of which concept has
also been used in several applications including vibracion
[5) and other areas [6]. In FDM, the spatial derivatives
arc expanded in terms of the finite difference schemes.
Fomberg [3] showed that the Fourier method is the limit
of the FDM as the orde-[ of expansion is increased.

In this paper, we study transient acoustic and elastic
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wave propagation in inhomogeneous media by using the
Fourier method. The material properties such as density
and sound speed are dependent on the position. To ver-
ify the numerical schemes, we compare the solution by
the Fourier method to the available analytic results. The
configuration that two different semi-infinite media are in
contact along the plane boundary is the simplest form of
the inhomogencous media, for which analytic solutions
arc known. As numerical examples, we consider the fluidf
fluid, fluidfsolid, and solidfsolid configurations, where a
point force is applied as a source function. In addition,
we consider a layered half-plane in which an elastic semi-
infinitc medium is covered by an elastic layer of uniform
thickness, which is one of the fundamental models in
seismology. The layered elastic half-plane has served as
an important bench mark problem in developing numecrical
techniques, since it includes free surface and inner re-
flecting plane, However, no analytic solution was available.
In the present study, we show how to derive the analytic
solutions of the layer problem and use them as a guide
to check the numerical results.

11. Formulations for the Fourier Method

We consider a two-dimensional wave equation in an
inhomogenéous media. When density and sound speed of
the fluid are functions of the position, the governing
equation for acoustic wave is given by
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where p(x,z) and (x,z) are density and sound speed,
and S(x, z, £) is the source function.

The basic idea of the Fourier method is to use Fourer
transform and its propertics for computing spatial deriv-

atives, To this end, we define the Fourier transform

e =] e ™ia

We recall that the Fourier transform of the derivatives are
readily given as

Geyre = [ oL gy

Since the inhomogeneous mediom of interest is infinite (or
semi-infinite), we must choose the numerical model o be
large enough 1o comtain all the interesting area with sutfic-
ient margins. If we consider the derivative, 3{(1/p}3p/3x}
{dx, in Eq. (1), the procedures are as follows:
(i) First, take the Fourier tmansform of pMx, 2z, 0 to
obtain (&, 2, .
(1i) Muliply j£ to P and apply the inverse Fourier
transform (0 compute A/ dx.

(iiiy Multiply 1/0 to 3p/dx and srepeat the step (i)

and (ii) to get {(1/0)dp/dx}/ax.

The derivative term over 2 may be meated in a similar
way. In practice, we use the Fast Fourier Transform (FFT)
to compute the Fourier and inverse Fourer transform.
Also, we select the dimension of the model 0 be 2" to
maximize the efficiency of the FFT program.

We cxpand the time derivative into the second order
finite difference approximation

a'p _ 1 _ - 9
Y 47)? (Prer = 20a ba- ). 2
where At is the time increment and p, is the pressure

at f= nAt. After n::arralllging Egs. (1) and (2), we have

L_@_n)
o ox

+-2 (L2 iz,
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As initial conditions, we assume that there is no move-
ment when ¢t<{) {or H0)=0 and IpQ)/2t=(), from
which we have p,=0 and p,=p_;. When n=1), the
spatial denivative terms in Eq. (3) are zero, since FFT

computation of p, is zero. Then, Eg. (3) becomes
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2
P ‘g(ﬂﬁ)— x,2,0), n=0.

The stability condition [4] requires

cat Q
dd < x @

where 4d is the grid size.
Next, we consider the elastic wave propagation in an

inhomogeneous medium, The goverming equations  are

given by
azl‘ _ aﬂ.u a(f.u

Iy 9t ox + 9z + oty (5)
8210 . aau i%

© at,’ - ax + 32 +pf24 (6)

where  w, w are displacements in x and z directions,
and f,, f, arc body forces. The stresses are related to

the displacements as

Ou -7(A+2u)—‘;—z +A%, 7

Ou =-=(A+2;a)% +A%, ®)
_ o du  dw

0y = 1 oz T ox ), )]

where A(x,z) and g(x, z) are Lamé coefficients. Egs.
(5)-(9) can be formulated for Fourier method in the same
mannes as in the acoustic wave equation.

When we model only finile area from an infinite
medium for numerical simulation of wavc propagation, we
always have a problem of arificial reflections at the
boundary. The reflected waves rc-enter the modcled area
and would contaminate the true solution as time incre-
ases, which occurs also in FDM and FEM. Several
methods have been proposed to eliminate the artificial re-
flections, among which we employ the method in Ref. [7),
because it is simple and suitable for the numerical sch-
emcs using regular grids. The basic idea of the method
is to introduce the damping zone {or absorbing arca) along
the boundary of the tnodel, where in the damping zone
the amplitude of the wave decreases exponentially.

III. Examples and Comparisons with Analytic
Solutions

We apply the Fourier method to the several examples,
in which 1wo different semi-infinite media are in contact

along a plane boundaries and point source is applicd o
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the point (x,,20). In Fig. 1, a typicat model for two
semi-infinite media in contact is shown, where shaded
area represents the damping zonc. The analytic solutions
for those problems arc usuvally obtained by using the
Cagniard-de Hoop method [8].

- x0)8(2—2p)

medium 11

AIIHIHHTIHTIenin

L,

A

4 MIMIIIumm

Figure 1. Typical model for two semi-infinite media in contact.

Example 1 : Fluid/Fluid

As the first cxample, we consider the fluid/fluid con-
figuration, in which a point source is applied in the upper

medium

@, 3% _ _ 1 %
20, L+ ANNz 2 = 5 GF (10
3, 3% _ 1 %
2<0, 3x2+ 0z¢ & af: (b

where ¢, and ¢, are sound speeds of the upper and
lower fluid. The boundary conditions at the surface
2=0 are continvity of pressurc and normal component

of the velocity

b= b2,

1 h _ 1 b
om0z py 0z

where o, and g, are density of the upper and lower

fluid. The detailed procedures of obtaining solutions of

Egs. (10) and (l1) may be found in the book by Aki
and Richards [8).
In numerical examples, we use the nondimensionalized

parameters defined as
X =xfl,, &=2z/L, ¢ =cc. ¥=1{cql), 0 =plp.

where L, and L, are the size of the model, and
co, oy are reference sound speed and density. We use
=1 mfs and py=1 kg,t‘ml, From now on, we drop
the prime notation and all paramcters are to be undersiood
as nondimensionalized quantitics unless units arc expressed.

We applicd the Fourier method to the arca (.5 {x,
2(0.5, and introduced the damping zone along the
boundary (o absorb the waves. The sound speed and den-
sity of ¢he upper and lower fluid are: p, =10, ¢ =
1.0; p,=1.5 ¢,= 12 The grids are 128x128 and
the time increment is 0.00]. In numerical simulation of
seismogram, the Ricker wavelet is frequently used as a
standard source. For a point source, the commonly used
source is of the shifted zero phase type given by

056400 ¥

f(#) = cosafy(t —t) e , {12)

where £, is the cut-off frequency and ¢, is time delay.
In this study, we set fz= 50 Hz and ;=006 s.

In Fig. 2, we plot the pressure as a function of time
at a fixed point at x=0.125, 2=0.25, while the source
position is x,= 0, Zz;= 0.125. The comparison of num-

erical and amalytic response in Fig. 2 shows excellent

¢ Num -— . Analytc
0.04 4 &
003 cﬁ
A
002 e
¢
e 0014 i
£ s
4 ? ¢ 1
© 7
g 0.00 ~ ? ) ?
Ll
-0.01 4 Lb ‘Tg
° %
-0.024 l?é
i
0034 2
L T Ll
00 01 0.2 0.3 04
time

Figure 2. Pressurc vs. time at the point x = (.125, 2= 0.25.
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agreement. In Fig. 3, we plot the snapshot of the pres-
sure at 2= 0.3. In the upper fluid ( 2>0), there are two
ripples (see Fig. 2 for the cross-section of npple). The
outer ripple comesponds to the direct wave from the
source, while inner ripple of relatively smaller amplitude
is the reflected wave at the interface z= 0. In the lower
fluid, there shows one ripple representing transmitted wave.
Note that the direct wave looks like a circular are,
whereas reflected wave docs not, since the reflection co-

efficients depcnds on the incident angle.

Figure 3. Snapshot of pressurc when ¢=0.3.

Example 2 : Fluid/Solid

The second example is the fluidfsolid configuration, of
which analytic solution has been obtained by dec Hoop
and van der Hijden (9,10]. In numerical simulation, we
may (ake the Muid as the speciai case of the elastic
medium. When we set g2 =0 in Egs. {(7)-(9), the stresses
o, and g, become negative pressure, whereas shear

stress vanishes

a”=ou:/l(%+%)=—p.

o, =1.

Egs. (5) and (6) may be represented as

¢

™

Qv _ _
P gy T VA

where » is the velocity vector.
We apply the source in the clastic medium at x,= 0

and 2z,=—0.125. Tn Fig. 4, we plot the pressure for a
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Figure 4. Pressure when ¢=04 and source function is f(f =
H(N.

fixed time ¢=04 along the line (< 2<).3 at x=
0.125. The density and sound specd of the fluid are
m=10, ¢ =07, whike the density and sound speed
of the P and § wave of the clastic solid are p, = L5,
a» 1.5, 3,-08. The grids arc 256 %256 and the time
increment is 0.0005. The source function is f( £ = H( £,
where  fI(f) denotes the Heaviside step function. The
comparison in Fig. 4 shows good agreement except the
singular points corresponding to the amival of P and S

Waves,

Example 3 : Solid/Solid

For (he next cxample, we consider the case of two
different elastic media in contact. Although Ben-Menahem
and Vered [11]) investigated the response of a solidfsolid
configuration, their concemns were mainly shear dislocat-
ions tor nonsymmetric sources, and didn't give the solution
in a clear and explicit way. Therefore, in the present paper
we derive the analytic solutions by using the Cagniard-de
Hoop mcthad in the same manner as in the previous ex-
amples.

We assume that the point source is applied 10 the
upper medium. After combining Egs. (5)-(9). the horizontal
and vertical  displacements 2z, and w, of the upper

medium are governed by

azul o 02u1 (?ZZAM 9 32u1 azw‘
FT al( 9x° * 8x82)+3‘( Fre axaz)

b &x) &z 2,) 1 (8),
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92° 0x0z

3%w, 2 3w, 3%u, 82w1_ 3%u,
Fr a‘( o er?z) B?( )

(14
+ &%) 82— 2y)f,(¢t),

where ¢, and £, are sound speeds of P and S waves
in the upper medium defined as
a?:(li1+2ﬂ|)/‘p|- B‘fzﬂn‘fph

and f., f, are timc dependent source functions ( 2 > ().

In the lower mcdium, the displacements are governed by
the same equations except that there are no source terms

and a;, 8, are replaced by a,, 8, defined as

a§=(ﬂz +2ul 04, 19%=F2/Pz.

After applying the Laplace transform to the time and
Fouricr transform to x coordinate in Eqs. (13} and (14),
we find that the transformed displacements U,* and W'

of the upper medium satisfy

, &U,° . IN gy e s mr 2 aw’
B Ea DU a8 g = 5
— Nz— 2 F (s},
s SV (egte e+ istal- g 400~
@ P (R AL " Vo T (16)

- a(zvzo}Fz(S)v

where £, s are the Fourier and Laplace transform vari-
ables and F,, F, arc the Laplacc transforms of 7,.(#)
and £,(f). Now we change the Fourier transform para-
meter as £=sg, which is necessary for applying the
Cagniard-de Hoop method in inverting Laplace transform.

The solutions of Egs. (I5) and (16} consist of the part-
icolar and complementary solutions. We can obtain the
particular solutions after applying the Founer transtorm
to z coordinate in Eqgs. (15) and (16) as if the upper

medium were extended infinitely as

24 2, U”)=( q )G.,e

sol2g— 20 b/d < —spd2p - 2)
w' "‘Iﬁ o +’( 8 )(lgé‘ o .
» o,

- ,'q
an

N UPSEN S - ST 3
Ca Fx 'J'a+lFZ)' GB ZS(I'x :F‘J?B ).

A1
23(

re=Va e, m=Vd+1/8 .

When 25 24, similar forms are obtained.

The compicmentary solutions consist of two terms re-

a2 ©oSyal
e .

presenting upgoing P and S waves, ¢ and

Hence, the towal solutions of the upper medium are

U]. = Up.)+ Q)A ’-.\r;..z+'nﬂ A = sy 18
(Wl-) (W,,', (im, L (.iq) e 7. 19

The transformed displacements {J,* and W," of the lower

medium have only downgoing waves

Uz‘ = q STz Yy | a2 19
“W)(“hj&e (20 ) Bee™, (19)

where 7, and y; are defined as

ra=Va@+1/d . rn=V+1/8 .

The four unknowns A,, A,;, and B;, B, can be
determined from the boundary conditions. At the interface
(z=10), we need continuity of the displacements and

normal and shear stresses

uy = uy, wy = Wy, 20

O an

o=d,  dh

From the boundary conditions, the unknowns are deter-

mined as

A! = ?’9!;' Ga € -'”'20+ r%p Gge -”ﬂﬂ. 22)
Ay= s Goe” "+ s Gge 7, 23)
B =t%G,e "+ t5% Che T, (24)
By=thsGoe "+ (% Gpe” ™", (25)

where #},, means reflection coefficient for P to P wave,
and (% denotes transmission coefficient for $ to P wave

occurring at z= 0 (similar meanings hold for other not-
ations). The detailed expressions for reflection and trans-
mission coefficients for two scmi-infinite elastic planes in
contact may be found in the book by Brekhovskikh and
Godin [12]. We may now invert Eqs. (22)-(25) by using
the Cagniard-de Hoop techniques (sec Ref. [B] for details).

In addition, we consider a layered half-plane where an
elastic semi-infinite medivm is covered by an elastic
layer of uniform thickness and a point source acts in the
layer as shown in Fig. 5. The earlier works [13]) have
been concentrated on the dispersion cutves. The procedures
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of deriving the analytic solutions are basically the same
as in the case of two semi-infinite elastic media n
contact. However, two additional terms arise in Eq. (I8)
in the finitc layer, since upper bound at 2= §{ causes
reflections. As waves are confined in the layer of finie
thickness, there are numerous reflections and  transmis-
sions so that the final forms consist of the infinite serics.
Wec are preparing the analytic solutioms in a scparalc

paper [14]).

vacuum
2=H
& Sx—xp)¥z—zy)
z=10 Arty,0
—————— P X
Ay pt2.P;

Figure 5. Laycred clastic half-plane.

For numerical examples, we consider the following
material properties:

Upper medium @ o= 10, $,=10, p,=10
Lower medium @ o= L5, §,=08, p,= 1.5

The height of the layer is /=02 and sourcc and re-
ceiver positions are x,= 0, z,=0.125, x=2= 00938
We assume that time dependence of the source is given
by

fo=1=H(b.

In numerical modeling for the case of the layer, the
region (z) H) over the layer has zero Lame constants to
simulate the stress-free conditions, The grids are 128 X
128 and the time increment is 0.001.

In Fig. 6, we comparcd the numerical results (sym-
bols) with analytic ones (solid and dotted lines) for two
cascs (H=02 and H=o0), which show good agree-
ments. We find that two resulis for H=02 and /f=co

are in perfect agreements until the first reflection of the
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P wave at z=[f when (=0.204,
As the last example, we study a more complicated

model as shown in Fig. 7. The material properties are:

(el o oumiiaQ 2m)
analyticiH £0.2m\ “..“
© NUM{H-BONE ) o
analyticiH =inbnie} oo
o
- 06 4
8 >
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¥ 02
g /
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T T = T
00 o1 o2 0.2 04 05

Figure 6. Compatisons of horizontal displacements when the
thickness of the layer is finitc and infinite,

Building
—
1 [y
O
Receiver
e = 2200 kg/m?
a,= 2700 m/s ™
B] = 1600 m/s

[ ]
Source

0,=2100 kg/m®

0’2:4500 m/s
TZ B, = 2500 m/s
» X
- .
25 km

Figure 7. Model for cominuously varying surface. The source
and recciver positions arc; x,=0.5km, z,=0.7 km,

and x=1.5km, z=1.45km.

Upper medium @ ¢, = 2700 mfs, B, = 1600 m/s,
g, = 2200 kg/m'
a,= 4500 mfs, #,= 2500 mys,

P 2100 kgim®

Lower medium

The size of the arca is 2.5 kmx 1.5 km, and we added
zero paddings over the region 1.5 km< <25 km for
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simulating vacuum area over the surface. In this model,
the length, sound speed and density are nondimension-
alized with respect to L, (=25 km), a; and ¢,. We
uscd 128 %X 128 grids so that the grid size is 23.4m. The
sourcc and receiver positions are; x=0.5 km, =07
km for source, and x=:1.5-km, z=145 km for receiver
(the receiver position is below the hypothetical building).
We also used the source function defined in Eq. (12). In
Fig. 8, we plot the stresses at the receiving point as a
function of the time, which may be used as input fun-
ctions for another applications such as seismic analysis

of the building. In Fig. 8, the stresses and time are non-

dimensionalized with respect to p,a% and L,/a,.

— S, su S,

0.20

0.10
& 0.00
2
]

-0.10

0.20 : , .

0.2 0.3 04 05 0.6

time

Figure B. Stresses vs. time at the receiver position.

IV. Conclusions

In this paper, we have studied transient acoustic and
elastic wave propagation in inhomogencous media by
using the Fourier method. The Fourier method has advan-
tages in metmory requircments and computing speed over
conventional methods such as FDM and FEM, because
the Fourier method needs less grid points for achieving
the same accuracy. As numerical examples, we considered
the fluid/fluid, fluidfsolid, and solid/solid configurations,
where two different semi-infinite media are in contact
along a plane boundary and analytic solutions are avail-
able. In numerical model, we introduced the damping zone
along the boundary to eliminate the antificially reflecting
waves at the boundary. In addition, we studied a layered
half-plang, in which an elastic semi-infinite medium is
covered by an elastic layer of uniform thickness. The

laycred elastic half-plane is one of the basic models in
seismology, but  no exact solution is known. We showed
how (o derive the analytic solutions by using the Cagn-
iard method. The comparisons of numerical and analytic
solutions all showed good agreements. Although only
two-dimensional problems are treated in the present study,
the Fourier method can readily be applied to the three-

dimensional wave problems.
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