A Comparison of Front-Ends for Robust Speech Recognition

*Doh-Suk Kim, **Jae-Hoon Jeong,

“*Soo-Young lee, and ***Rhee M. Kil

Abstract

Zero-crossings with Peak amplitudes (ZCPA) model motivaled by human auditory periphery was proposed to extract

reliable feawmres from speech signals even in noisy environments for robust speech recognition. In this paper, the perfor-

mance of the ZCPA model is further improved by incorporating conventional speech processing techniques into the model
output. Spectral and cepstral representations of the ZCPA model output are compared, and the incorporation of dynamic
features with several different lengths of time-derivative window are evalvated. Also, comparative evaluations with other

front-ends in real-world noisy environments are performed, and result in the superiority of the ZCPA model.

I. Introduction

Automatic speech tecognition (ASR) is one of the
leading technologies serving as a man-machine interface
for real-world applicatim'k In general, the performance of
an ASR system is usvally degraded when there exist en-
vironmental mismatches between training and test phases,
One type of mismatch in real environments is the various
kinds of background noises which affect the feature
extraction stage in an ASR system. In this sense, the
front-end for robust speech recognition requires to reduce
redundancy and variablity as well as the ability to capture
important cues of speech signals, even in noisy environ-
ments. One of the most widely used feature representations
is cepstral coefficients - derived from linear predictive
coding (LPC) in which the speech signal is assumed to
be the output of the all-pole linear flter simulating the
vocal mact of a human being. The ASR systems with
LPC-derived cepstrum work well in clean environments,
but speech recognition performance is severely degraded
in noisy environments.

On the other hand, modeling of the speech perception
processes may be more hatural for ASR than that of the
speech production pmcw'scs. and there have been many
researches devoted to the modeling functional roles of the
peripheral auditory systems [1], [2], (3], {4]. Scneff [2)
suggested a generalized synchrony detector {G5D) to
identify formant peaks and periodicitics of the speech
signal. Hunt and Lefebvre [5] performed recognition ex-
periments on noisy speech using a dynamic time warping
(DTW) recognizer, and showed noise-robustness of the
GSD. Perceptual linear Rrediction (PLP} analysis method
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[6], [7} is a perception-based technique in which the
speech spectrum is transformed to the auditory spectrum
by several perceptually motivated relationships before per-
forming conventional linear prediction (LP} analysis. The
robustness of the PLP analysis to additive noise was
reported in [8]. Subband-Autocorrelation (SBCOR) analysis
technique [9) was suggested t0 extract periodicities present
in speech signals by computing autocorrelation coeffcients
of subband signals at specifc time-lags, and was shown
to outpetform the smoothed group delay specttum for
speech recognition tasks under noisy environments.

The superiotity of the auditory modeling is more pro-
minent for nonstationary real-world noisy environments
where conventional techniques such as spectral subtraction
{10] or shon-term Wiener fltering [11] may not operate
well since they are based on the estimation of noise
spectrum and the noise spectrum may change severely
over time. Although computational auditory models have
been shown to outerform conventional signal processing
techniques, especially in noisy environments, modeling
peripheral auditory systems is still a diffcult probiem.
First, studying an auditory model requires interdisciplinary
research, including physiology, psychoacoustics, physics,
and electrical enginecing. Second, little is known about
the exact mechanism of the auditory periphery for detailed
construction of the model. Since the auditory medel usu-
ally involves multistage nonlinear transformations, analyt-
ical treatments are intractable, and most auditory models
rely heavily on cxperiments, even though there have been
some efforts to analyze auditory models {12], {13}, [14],
[45). Furthermore, auditory models require careful deter-
mination of many free parameters and much computation
time, which make it duffcult for them to be widely used
in speech recognition systems.

Zero-crossings with peak amplitudes (ZCPA} model
was proposed as a robust front-end for ASR in noisy



environments [16). The ZCPA is very simplifed auditory
model and the computational complexity is much less
severe than other auditory models, and was shown to out-
perform both lincar predictive coding (LPC) cepstrum and
the ensemble interval histogram {(EIH) [17] when speech
is corrupted by white Gaussian noise.

In this paper, the performance of the ZCPA nodel is
further improved by incorporating conventional speech pr-
ocessing techniques into the model. Also, comparative
evalvations of several front-ends in real-world noisy
environments are presented. This paper is organized as
follows. Section 11 presents a bricf review of the ZCPA
muodel for robust feature extraction. In section 11l the data
base, noise matetial, and speech recognizer used in this
paper are described. Performance improvements of the
ZCPA model are provided in section 1V, followed by
comparisons with other front-ends in section V and con-
clusions in section V1.

II. ZCPA Analysis

The ZCPA model consists of a bank of bandpass
cochlear flters and nonlinear stages at the output of each
cochlear filter. The cochlear Ffilicrbank represents frequ-
ency selectivity al various locations along a basilar me-
mbranc in the cochlea, and was implemented with Kates®
traveling wave filters without the adaptive feedbacks 118].
Period histogram and interval histogram of firing patterns
of auditory nerve fibers teveal that there is a high degree
of phase locking in auditory nerve fibers, that is, auwditory
nerve fibers tend to fire in synchrony with the stimulus
[19), [20), [21}. In the ZCPA model, a synchronous neural
firing is simulated as the upwardgoing zero-crossing cvent
of the signal at the output of cach bandpass filter, and
the inverse of time interval between adjacent neural fir-
ings is represented as a frequency histogram. Further, each
pcak amplitude between successive zero-crossings is dete-
cted, and this peak amplitude is used as a nonlinear wei-
ghting factor 10 a frequency hin 1o simulate the relation-
ship between the stimutus intensity and the degrec of
phase-locking of auditory nerve fibers. The histograms
across all filter channels .are combined to represent output
of the auditory model. The operation of the ZCPA is sign-
ificantly different fmml conventional signal processing
techniques. The temporal frequency information of one
period of the signal is obtained by zcro-crossing intervals,
and the temporal intensity infbrmation is also incorporated
by a peak detector follbw'mg a satvrating nonlinearity.
These tcmporal frequency and intensity information are
then accumulated to oblain the final output.
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[1I. Data Base and Recognition Systems

In consideration of practical applications of automatic
speech tecognition, 50 Korean words which seem w be
nccessary for control of electric home appliances includ-
ing TV and VCR were chosen. The utterances from 16
male speakers were sampled at 11.025 kHz sampling rate
with 12 bit precision via SONY ECM-220T condenser
microphone. The data base has relatively low quality in
consideration of the cost and speed of hardware which is
under development [22|. 900 tokens of 9 speakers were
used as training of recognizers, and 1050 tokens of the
other speakers as test evaluations.

There are many kinds of noises in real environments
which are not stationary in general, and performance
cvalvation in rcal sitations may be very important for
practical applications of ASR. Factory noise, military oper-
ations room noisc, and car noise, contained in NOISEX-92
CD ROMS [23], were added to the test data sets at var-
ious SNRs for test cvaluations in real situations.

The integrated speech recognition system under devel-
pment adopis the neural network classifier preceded by
wace-segmentation algorithm [24] for improved recogiton
petformance. However, the most widcly used recogzer is
bhased on hiddn Markov Markov morel (HMM). Thus,
both discrete HMM speech recognizer and multilayer per-
ceptron (MLP) rtecognizer preceded by trace-segmentation
arc used to investigate the recognizer independent reliabil-
ity of features. There have been a lot of schemes proposed
to apply neural networks 1o speech recognition, and static
approach utilzihg an MLP showed better petformance than
dynamic approach at least for isolated word recogmnition
tasks [25}. MLP is trained by using ervor back propagation
algorithm [26] with new input fcatures passed through
trace-segmentation, where each ocutput neuton indicates a
particular word. Thus, the number of output neurons is
same as the number of vocabulary words. The number of
hidden neurons is twice that of output neurons, and the
number of input ncuron is same as the normalized time
frames, N, which is 64, multiplied by the number of
components of a feature vector at onc time frame. For
HMM recognizer, word-level discrete density HMM con-
struction is performed and cach HMM models a particular
word with the left-to-right model. In the left-to-righ
model, cach state has only two transitions, one is going
back to its own state and the other is going to the next
state. The number of states of the HMM is set w0 be
cither five for onevllable word or eight for muli-syllable
word. Each HMM is iteratively trained with Baum-Welch
algorithm based on maximum likelihood estimation (MLE).
The codebook is (rained with training data in iterative
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manner [27], and the size of codebook is set to be 256,

1V. Toward Performance Improvements

A. Spectral versus Cepstral Representations
of the ZCPA

Human voice consists of spectral fine structures caused
by pseudo-periodic glottal source and spectral envelope
which rcpresents resonance characteristics of the vocal tract.
What is required for speech recognition is the latter,
since the positions, and sizes of the vocal apparatus in
vocal fract are changcld accord-ing to the utterance.
Spectral envelope and spectral fine structure of speech can
be separated in cepstral domain becausc they are additive
in log-spectral domain, and cepsttum is defined as the
inverse Fourier transform of the logarithm of magnitude
spectrum. This may be one of the reasons of prevailing of
cepstral representations in the area of speech recognition.
Also, it is known that the input feature vector is made
somewhat uncorrelated by the inverse cosine transform -
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inverse Fourier transform is reduced to the inverse cosine
transform in this case since the magnitude spectrum is
symmetric about zero,

The output of the ZCPA can be considered as psendo-
log specaum if the logarithmic function is used for the
saturating nonlinearity. Thus cepstral representations can
be obtained from the ZCPA spectrum. Let us denote
¥(m, §) by the ZCPA output at time m, for i=1, .. _,
N, where N denotcs the number of frequency bins. If
the frequency bins of the ZCPA are composed according
to the back or mel scale, cepstral cocfficients at time m
in the warped frequency scale, ¢(m, §), can be obrained

using
Som, D)= ﬂ y(m.i)cos[z(i—%),—’s]. \<i<L. (1)

where L is the desired length of the ccpstrum (28]
Recognition rates of ZCPA spectrum and ZCPA cep-
strum obtained by the HMM recognizer are shown in
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Figure 1. Comparison of ZCPA spectrum and ZCPA cepstrum under various types of noisy conditions, HMM recognizer is used.
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Figure 2. Comparison of ZCPA spectrum and ZCPA cepstrum under various types of noisy conditions. MLP recognizer is used.



Fig. 1. ZCPA cepstrum is extracted from ZCPA spectrum
via Eq.(1). The number of coefficients is 16 for ZCPA
spectrum, and 12 for ZCPA cepstrum, respectively. Alth-
ough less number of coefficients are used in cepstrum,
performance of the ZCPA cepstrum is similar to or higher
than the ZCPA spectrum, except for some lower SNR
conditions of the military operationsroom noise case. Fig.
2 shows the results of the same experiments as Fig. |
when the MLP speech recognizer is used. Recognition rates
of the MLP recognizer are higher than those of HMM
recognizer for most cases. Further, the degree of super-
iority of ZCPA cepstrum to ZCPA spectrum is more clear
in the MLP recognition system. Thus it can be concluded
that the cepstral representation of the ZCPA model is
more useful than spectral representation.

B. Incorporation of Dynamic Features
It is well known that the wransition of spectral contents
through time plays an important role in human perception
of speech [29), and it is. common to incorporate dynamic
properties of speech into spcech recognition systems by
augmenting dynamics such as delta and delta-delta features
to static features for improved recognition accuracy, not
only in clean but also in noisy conditions. Computing
dclta fcatures is equivalent 1o an FIR filtering, which re-
_jects lower modulation frequency variations of the speech
parameters. If speech and non-speech componenis occupy
different ranges in the parameter domain, they can be
separated by filtering in the parameter domain. Actually,
the channel characteristics occupy the lower range of the
modulation frequency in the logarithmic domain, and lots
of techniques, such as cepstral mcan normalization (CMN)
[30], and RASTA procéssing and its several variants
13£1,132], have been suggested to separate channel effects
from speech parameters.
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However, it was reported that contribution of dymamic
features of thc EIH 10 the performance improvements is
much smaller than that of mel-frequency ccpstral coeffic-
ients (MFCC) |33]. This may be duc to the fact that the
length of the time-window is channel dependent in the
EIH, ic., it varies inversely with the characteristic frequ-
ency of the channel. For example, the length of the
time-window at the channel with the low-est characteristic
frequency spans wp w 50 msec, which is much longer
length when compared with the frame raic of about 10
msec. Thus, appropriate dynamic features cannot be obta-
ined with the derivative window of 50 msec duration,
which is used in [33]. Even though variable length of
the derivative window [34], [35] may be applicd to the
computation of the delta features of the EIH and ZCPA,
it is beyond the scope of this study. Instead, we tried
several fixed derivative window lengths: 50.8 msec (5
frames), E11.7 msec (11 frames), 213.3 msec (21 frames),
and 436.8 msec (43 frames}). As the length of the window
is increased, the higher cutoff frequency is decreased to
reject higher modulation frequency components.

Fig. 3 summarizes recognition results of HMM re-
cognition system as the derivative window length is varied.
ZCPA cepstrum and delta-cepstrum are used as feature
vector, and two independent codcbooks are constructed
for cepstrum and delta-cepstrum, respectively, under the
assumption that the static and dynamic features are
independent each other. Recognition rate obtained by using
static feature (cepstrum) only is depicted as the [eftmost
bar (CEP) at each plot to indicate the improvements in-
curted by combination of static and dynamic features. It
is clear that contribution of dynamic features is poor if
the derivative window length is o short (5 frames) or
too long (43 frames). And derivative window length of
11 frames shows the best performance on average for the
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Figure 3. Recognition rate (%) obtained with ZCPA cepstrum and ZCPA cepsrum augmented by delta-cepstrum with various derivative

window lengths under various types of noisy conditions. HMM recognizer is used.
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Figure 4, Recognition rate (%) obtained with ZCPA cepstrum and ZCPA cepstrum augmented by delta-cepstrum with various derivative
window lengths under various types of noisy conditions. MLP recognizer is used.

ZCPA. However, the wend of MLP recognizer is signif-
icantly different from that of HMM recognizer. There is
no performance improvement by utilizing dynamic features
for MLP recognizer. Further, different time-detivative
window lengths do not make any differences in recognition
rates. This is because the delta features obtained by a
linear combination of static features can be represented
internally in the hidden representations of the MLP re-
cognizer with static features only. Thus, it is sufficient to
use only static features for MLP recognition systems.
Even though somewhat longer window lengihs are
preferable for ZCPA with HMM recognizer, it is not suf-
ficient to conclude that this is the best. As mentioned
before, different lengths of bandpass signals are considered
in computing the ZCPA output according to the charac-
teristic frequency of the channel while the frame rate is
fixed. Thus it may be possible to apply different lengths
of time-derivative window according to the characteristic
frequency of the channeln [34], [35], and it temains as

future works.

V. Summary of Results and Comparison with
QOther Front-ends

In this section, the improved performance of the ZCPA
cepstrum (ZCPAC) is compared with other frontends in-
cluding LPC cepstrum (LPCC), mel-frequency cpstral
coefficients (MFCC), subband autocorrelation {SBCOR),
perceptual linear prediction (PLP), and EIH cepstrum
(EIHC) in various types of noisy environments, Table 1
summarizes comparison of several features concatenated
by time-derivative versions of them. Recognition rtates are
obtained by HMM recognizer. The window length of
time-derivative features is 11 frames, ie., 111.7 msec for

all front-ends. For LPCC, speech signal is first multiplied
by hamming window of 20.3 msec duration every 10.15
msec, and 8 LPC coefficients and 12 cepstral coefficients
are obtained successively. For MFCC, 16 mel-scale
triangular bandpass filters are used in frequency domain
to obtain 2 coefficients. To calculate SBCOR, 16
hamming bandpass filters, which are also used in both
the ZCPA and the ElH, arc used in frequency domain.
In PLP processing, 16 critical-band filters are used and
LPC order is set to 8. Performance of the several EIH
cepstrum were evaluated by varying the number of levels
and level values, and only the best case among them ix
shown. (7 level crossing detectors are used.)

On clean speech, the recognition of all front-ends are
similar to cach other. As the noise level increases, the re-
cognition rate of the ZCPA becomes higher than that of
the other front-ends for all kinds of noises. The usefulness
of the ZCPA in noisy environmentis is maximum when
speech data is cormmupted by white Gaussian noise. However,
for speech data comupted by real-world noises, the
differences in recognition rate between the ZCPA and the
others are reduced compared with the other kinds of noisy
environments. Also, the performance of SBCOR is higher
than that of PLP below 20dB SNR when speech data is
cormupted by white Gaussian noise. Howe- ver, PLP
outerforms SBCOR under real-world noisy environments
on the contrary.

Summary of recognition rates of MLP recognizer is
shown in Table 2. Since the incorporation of time-
derivative features does not improve recognition accuracy
in MLP system, results obtained with only static features
are summatized. ZCPA cepsqum outperforms all the
other features, too. Further, MLP recognizer outperforms
HMM recognition systems especially at noisy conditions.
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Table 1. Comparison of recognition rates (%) obtaied using several features augmented by time-detivative featurcs under various types
of noisy environments where HMM recognition system is osed.

(a) White Gaussian noise {b) Factory noise

SNR(dB) | LPCC | MFCC [SBCOR| PLP | EIHC [ZCPAC SNR(dB) || LPCC | MFCC [ SBCOR | PLP | EIHC | ZCPAC
Clean 94 .4 975 9.4 | 982 | 974 97.6 Clean 94.4 97.5 96.4 98.2 97.4 97.6
25 74.4 921 94,1 6.0 | 97.0 96.9 25 1.2 95.9 94.3 97.1 26.6 97.1
20 385 740 900 | 859 | 935 94.6 T 20 790 | %05 91.3 950 | 944 95.1
15 12.0 383 727 | 555 | 843 87.0 15 526 | 673 778 8i.6 86.7 90.3
10 4.2 12.1 432 | 257 | 663 72.7 10 20.7 N7 50.6 524 700 75.4
5 26 49 16.9 7.7 | 453 50.5 5 19 10.5 222 257 46.3 52.3

(c) Military operations room noises (d) Car noise

SNR(dB) ] LPCC | MFCC |SBCOP| PLP | EIHC |ZCPAC SNR(dB) || LPCC | MFCC |[SBCOR| PLP | EIHC |ZCPAC
Clcan 94.4 97.5 9.4 98.2 97.4 97.6 Clean 94.4 97.5 964 | 982 | 974 97.6
25 91.5 96.1 95.0 6.9 “96.2 96.7 10 936 95.7 955 | 981 { 972 97.6
20 81.4 89.2 913 94.5 922 94.0 S 93.2 95.5 95.1 973 | 975 97.2
15 535 09 | 769 824 9.8 85.8 Ol 91.5 94.6 945 | 963 | 96.1 96.6
10 238 394 47.6 553 61.8 68.0 -5 84.8 90.7 896 | 926 | 935 93.6
s 7.7 16.0 231 290 306 373 -10 68.2 78.2 758 | 129 | B42 86.9

Table 2. Comparison of recognition tates (%) obtained using severat features under various types of noisy environments where MLP
recognition system is used. Only the results obtained with static fcatuses are shown.

(a) Whitc Gaussian noise (b} Factorky noise

SNR{d8)} | LPCC | MFCC [SBCOR| PLP | EIHC |ZCPAC SNR(dB) | LPCC | MFCC |SBCOR | PLP | EIHC |ZCPAC
Clean 95.0 970 | 960 | 984 | 983 | 978 Clean 95.0 97.0 960 | 984 | 983 978
25 79.0 930 | 938 | 960 | 974 | 976 25 Nno 95.5 93.7 97.1 | 977 97.6
20 50.7 732 854 856 953 95.7 20 80.3 86.8 88.8 92.1 95.6 96.6
15 249 428 69.8 61.7 88.1 917 15 56.3 64.8 74.8 78.7 90.5 934
to 102 217 46.6 329 77.0 81 10 29.9 321 49.8 516 79.0 85.1
5 51 13.9 26.3 15.8 62.7 71.5 ] 10.6 12.0 250 275 63.0 702

(C} military operations room noise {d) Car noise

SNR{dB)| LPCC | MFCC |SBCOR | PLP | EIHC |[ZCPAC SNR(dB)| LPCC { MFCC |SBCOR| PLP | EIHC | ZCPAC
Clean 95.0 97.0 96.0 98.4 98.3 97.8 Clean 95.0 97.0 96.0 98.4 98.3 97.8
25 930 96.3 949 98.2 978 979 10 95.0 972 95.0 98.1 98.4 98.1
20 82.5 91.0 .89.6 032 96.2 9%6.7 5 94.0 949 941 95.5 97.9 97.7
15 61.3 133 71.3 798 90.8 93.2 0 928 970 91.2 | 91.8 97.2 97.1
10 39.6 410 41.0 550 771 834 B -5 86.8 859 844 834 96.6 96.6
5 17.0 20.3 07 324 55.5 60.4 -10 664 62.6 66.3 69.4 91.0 93.0
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VI. Conclusions

The ZCPA model based on human auditory periphery
was proposed as a robust front-end for speech recognition
systems in noisy environments, and shown to be robust
to additive white Gaussian noise than both LPCC and
the EIH in our previous work. In this paper, performance
of the ZCPA model is further improved and evaluated in
several real-world noisy environments. For further impro-
vemenis in recognition performance, several conventional
speech processing techniques are also incorporated into the
ZCPA model. Spectral representation of the features are
extended into cepstral representations, which demonstrates
better recognition rates in general with Jess number of
coefficients. Also, several different lengihs of time have
been tried to obtain good time-derivative features of the
developed auditory model. Relatively longer length in the
time-derivative window results in better recognition ac-
curacy with the HMM classifier. However, it does not
make much differences with the MLP classifier. The MLP
classifier shows much better recognition rates than the
discrete HMM classifier in all cases. Also, comparative
evaluations of the ZCPA modet with several feature extr-
action methods demonstrate the robustness of the ZCPA
model in noisy environments.
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