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Abstract

Zero-crossings with Peak amplitudes (ZCPA) model motivated by human auditory periphery was proposed to extract 

reliable features from speech signals even in noisy environments for robust speech recognition. In this paper, the perfor­
mance of the ZCPA model is further improved by incorporating conventional speech processing techniques into the model 

output. Spectral and cepstral representations of the ZCPA model output are compared, and the incorporation of dynamic 

features with several different lengths of time-derivative window are evaluated. Also, comparative evaluations with other 
front-ends in real-world noisy environments are performed, and result in the superiority of the ZCPA model.

I. Introduction

Automatic speech recognition (ASR) is one of the 

leading technologies serving as a man-machine interface 
for real-world applications. In general, the performance of 

an ASR system is usually degraded when there exist en­

vironmental mismatches between training and test phases. 
One type of mismatch in real environments is the various 
kinds of background noises which affect the feature 

extraction stage in an ASR system. In this sense, the 

front-end for robust speech recognition requires to reduce 
redundancy and variablity as well as the ability to capture 
important cues of speech signals, even in noisy environ­

ments. One of the most widely used feature representations 

is cepstral coefficients derived from linear predictive 

coding (LPC) in which the speech signal is assumed to 
be the output of the all-pole linear flter simulating the 

vocal tract of a human being. The ASR systems with 

LPC-derived cepstrum work well in clean environments, 

but speech recognition performance is severely degraded 
in noisy environments.

On the other hand, modeling of the speech perception 

processes may be more natural for ASR than that of the 

speech production processes, and there have been many 
researches devoted to the. modeling functional roles of the 
peripheral auditory systems [1], [2], [3], [4]. Seneff [2] 

suggested a generalized synchrony detector (GSD) to 

identify formant peaks and periodicities of the speech 

signal. Hunt and Lefebvre [5] performed recognition ex­

periments on noisy speech using a dynamic time warping 

(DTW) recognizer, and showed noise-robustness of the 

GSD. Perceptual linear prediction (PLP) analysis method 

[6], [7] is a perception-based technique in which the 
speech spectrum is transformed to the auditory spectrum 
by several perceptually motivated relationships before per­

forming conventional linear prediction (LP) analysis. The 
robustness of the PLP analysis to additive noise was 

reported in [8]. Subband-Autocorrelation (SBCOR) analysis 

technique [9] was suggested to extract periodicities present 
in speech signals by computing autocorrelation coeffcients 
of subband signals at specifc time-lags, and was shown 

to outperform the smoothed group delay spectrum for 
speech recognition tasks under noisy environments.

The superiority of the auditory modeling is more pro­

minent for nonstationary real-world noisy environments 

where conventional techniques such as spectral subtraction 

[1 이 or short-term Wiener fltering [11] may not operate 
well since they are based on the estimation of noise 

spectrum and the noise spectrum may change severely 

over time. Although computational auditory models have 

been shown to outerform conventional signal processing 

techniques, especially in noisy environments, modeling 

peripheral auditory systems is still a diffcult problem. 
First, studying an auditory model requires interdisciplinary 
research, including physiology, psychoacoustics, physics, 
and electrical engineeing. Second, little is known about 
the exact mechanism of the auditory periphery for detailed 
construction of the model. Since the auditory model usu­

ally involves multistage nonlinear transformations, analyt­

ical treatments are intractable, and most auditory models 

rely heavily on experiments, even though there have been 

some efforts to analyze auditory models [12], [13], [14], 

[15]. Furthermore, auditory models require careful deter­
mination of many free parameters and much computation 

time, which make it duffcult for them to be widely used 
in speech recognition systems.

Zero-crossings with peak amplitudes (ZCPA) model 
was proposed as a robust front-end for ASR in noisy 
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environments [16]. The ZCPA is very simplifed auditory 
model and the computational complexity is much less 

severe than other auditory models, and was shown to out­
perform both linear predictive coding (LPC) cepstrum and 

the ensemble interval histogram (EIH) 卩기 when speech 
is corrupted by white Gaussian noise.

In this paper, the performance of the ZCPA nodel is 

further improved by incorporating conventional speech pr­

ocessing techniques intq the model. Also, comparative 
evaluations of several front-ends in real-world noisy 
environments are presented. This paper is organized as 
follows. Section II presents a brief review of the ZCPA 

model for robust feature extraction. In section III the data 
base, noise material, and speech recognizer used in this 

paper are described. Performance improvements of the 

ZCPA model are provided in section IV, followed by 
comparisons with other front-ends in section V and con­

clusions in section VI.

IL ZCPA Analysis

The ZCPA model consists of a bank of bandpass 

cochlear flters and nonlinear stages at the output of each 
cochlear filter. The cochlear filterbank represents frequ­

ency selectivity at various locations along a basilar me­
mbrane in the cochlea, and was implemented with Kates' 

traveling wave filters without the adaptive feedbacks [18]. 
Period histogram and interval histogram of firing patterns 

of auditory nerve fibers reveal that there is a high degree 
of phase locking in auditory nerve fibers, that is, auditory 

nerve fibers tend to fire in synchrony with the stimulus 

[19], [2이, [21]. In the ZCPA model, a synchronous neural 
firing is simulated as the upwardgoing zero-crossing event 

of the signal at the output of each bandpass filter, and 

the inverse of time interval between adjacent neural fir­
ings is represented as a frequency histogram. Further, each 

peak amplitude between successive zero-crossings is dete­
cted, and this peak amplitude is used as a nonlinear wei­

ghting factor to a frequency bin to simulate the relation­
ship between the stim니 us intensity and the degree of 

phase-locking of auditory nerve fibers. The histograms 
across all filter channels are combined to represent output 
of the auditory model. The operation of the ZCPA is sign­
ificantly different from conventional signal processing 

techniques. The temporal frequency information of one 
period of the signal is obtained by zero-crossing intervals, 
and the temporal intensity information is also incorporated 
by a peak detector following a saturating nonlinearity. 

These temporal frequency and intensity information are 
then accumulated to obtain the final output.

III. Data Base and Recognition Systems

In consideration of practical applications of automatic 

speech recognition, 50 Korean words which seem to be 
necessary for control of electric home appliances includ­
ing TV and VCR were chosen. The utterances from 16 

male speakers were sampled at 11.025 kHz sampling rate 
with 12 bit precision via SONY ECM-220T condenser 

microphone. The data base has relatively low quality in 
consideration of the cost and speed of hardware which is 
under development [22]. 900 tokens of 9 speakers were 

used as training of recognizers, and 1050 tokens of the 
other speakers as test evaluations.

There are many kinds of noises in real environments 

which are not stationary in general, and performance 
evaluation in real situations may be very important for 
practical applications of ASR. Factory noise, military oper­

ations room noise, and car noise, contained in NOISEX-92 

CD ROMS [23], were added to .the test data sets at var­
ious SNRs for test evaluations in real situations.

The integrated speech recognition system under devel- 

pment adopts the neural network classifier preceded by 

trace-segmentation algorithm [24] for improved recogiton 
performance. However, the most widely used recogzer is 
based on hiddn Markov Markov morel (HMM). Thus, 
both discrete HMM speech recognizer and multilayer per­
ceptron (MLP) recognizer preceded by trace-segmentation 

are used to investigate the recognizer independent reliabil­
ity of features. There have been a lot of schemes proposed 
to apply neural networks to speech recognition, and static 
approach utilzing an MLP showed better performance than 

dynamic approach at least for isolated word recognition 

tasks [25]. MLP is trained by using error back propagation 

algorithm [26] with new input features passed through 

trace-segmentation, where each output neuron indicates a 
particular word. Thus, the number of output neurons is 

same as the number of vocabulary words. The number of 
hidden neurons is twice that of output neurons, and the 
number of input neuron is same as the normalized time 

frames, N, which is 64, multiplied by the number of 
components of a feature vector at one time frame. For 

HMM recognizer, word-level discrete density HMM con­
struction is performed and each HMM models a particular 
word with the left-to-right model. In the left-to-right 
model, each state has only two transitions, one is going 

back to its own state and the other is going to the next 
state. The number of states of the HMM is set to be 

either five for oneyllable word or eight for multi-syllable 
word. Each HMM is ilerativ이y trained with Baum-Welch 

algorithm based on maximum likelihood estimation (MLE). 
The codebook is trained with training data in iterative 
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manner [27], and the size of codebook is set to be 256.

IV. Toward Performance Improvements

A. Spectral versus Cepstral Representations 
of the ZCPA

Human voice consists of spectral fine structures caused 
by pseudo-periodic glottal source and spectral envelope 

which represents resonance characteristics of the vocal tract. 
What is required for speech recognition is the latter, 

since the positions, and sizes of the vocal apparatus in 
vocal tract are changed accord-ing to the utterance. 
Spectral envelope and spectral fine structure of speech can 

be separated in cepstral domain because they are additive 

in log-spectral domain, and cepstrum is defined as the 
inverse Fourier transform of the logarithm of magnitude 

spectrum. This may be one of the reasons of prevailing of 

cepstral representations in the area of speech recognition. 
Also, it is known that the input feature vector is made 
somewhat unconelated by the inverse cosine transform - 

inverse Fourier transform is reduced to the inverse cosine 
transform in this case since the magnitude spectrum is 

symmetric about zero.

The output of the ZCPA can be considered as pseudo­
log spectrum if the logarithmic function is used for the 

saturating nonlinearity. Thus cepstral representations can 

be obtained from the ZCPA spectrum. Let us denote 

y( w, z) by the ZCPA output at time w, for Z— 1,..., 

N、where N denotes the number of frequency bins. If 

the frequency bins of the ZCPA are composed according 
to the baek or mel scale, cepstral coefficients at time m 

in the warped frequency scale, /), can be obtained 

using

?( mt /)= * y(w,z)cosp(2-y)-^j, 1^/^L, (1)

where L is the desired length of the cepstrum [28].
Recognition rates of ZCPA spectrum and ZCPA cep­

strum obtained by the HMM recognizer are shown in
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Figure 1. Comparison of ZCPA spectrum and ZCPA cepstrum under various types of noisy conditions. HMM recognizer is used.

(a) White Gaussian Noise (b) Factory Noise

Fig니「e 2. Comparison of ZCPA spectrum and ZCPA cepstrum under various types of noisy conditions. MLP recognizer is used.
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Fig. 1. ZCPA cepstrum is extracted from ZCPA spectrum 

via Eq.(l). The number of coefficients is 16 for ZCPA 

spectrum, and 12 for ZCPA cepstrum, respectively. Alth­

ough less number of coefficients are used in cepstrum, 

performance of the ZCPA cepstrum is similar to or higher 
than the ZCPA spectrum, except for some lower SNR 

conditions of the military operationsroom noise case. Fig. 
2 shows the results of the same experiments as Fig. 1 
when the MLP speech recognizer is used. Recognition rates 
of the MLP recognizer are higher than those of HMM 

recognizer for most cases. Further, the degree of super­

iority of ZCPA cepstrum to ZCPA spectrum is more clear 

in the MLP recognition system. Thus it can be concluded 
that the cepstral representation of the ZCPA model is 
more useful than spectral representation.

B. Incorporation of Dynamic Feat니「es
It is well known that the transition of spectral contents 

through time plays an important role in human perception 
of speech [29], and it is common to incorporate dynamic 

properties of speech into speech recognition systems by 

augmenting dynamics such as delta and delta-delta features 
to static features for irnproved recognition accuracy, not 
only in clean but also in noisy conditions. Computing 
d이ta features is equivalent to an FIR filtering, which re­

jects lower modulation frequency variations of the speech 

parameters. If speech and non-speech components occupy 
different ranges in the parameter domain, they can be 
separated by filtering in the parameter domain. Actually, 

the chaimel characteristics occupy the lower range of the 
modulation frequency in the logarithmic domain, and lots 
of techniques, such as cepstral mean normalization (CMN)

[30] , and RASTA processing and its several variants
[31] ,[32], have been suggested to separate channel effects 
from speech parameters.

However, it was reported that contribution of dymamic 
features of the EIH to the performance improvements is 

much smaller than that of mel-frequency cepstral coeffic­

ients (MFCC) [33]. This may be due to the fact that the 
length of the time-window is channel dependent in the 
EIH, i.e., it varies inversely with the characteristic frequ­

ency of the channel. For example, the length of the 
time-window at the channel with the low-est characteristic 
frequency spans up to 50 msec, which is much longer 

length when compared with the frame rate of about 10 

msec. Thus, appropriate dynamic features cannot be obta­
ined with the derivative window of 50 msec duration, 
which is used in [33]. Even though variable length of 
the derivative window [34], [35] may be applied to the 

computation of the delta features of the EIH and ZCPA, 
it is beyond the scope of this study. Instead, we tried 
several fixed derivative window lengths: 50.8 msec (5 
frames), 111.7 msec (11 frames), 213,3 msec (21 frames), 

and 436.8 msec (43 frames). As the length of the window 

is increased, the higher cutoff frequency is decreased to 
reject higher modulation frequency components.

Fig. 3 summarizes recognition results of HMM re­

cognition system as the derivative window length is varied. 

ZCPA cepstrum and delta-cepstrum are used as feature 
vector, and two independent codebooks are constructed 
for cepstrum and delta-cepstrum, respectively, under the 

assumption that the static and dynamic features are 

independent each other. Recognition rate obtained by using 
static feature (cepstrum) only is depicted as the leftmost 

bar (CEP) at each plot to indicate the improvements in­
curred by combination of static and dynamic features. It 
is clear that contribution of dynamic features is poor if 
the derivative window length is too short (5 frames) or 
too long (43 frames). And derivative window length of 

11 frames shows the best performance on average for the
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Figure 3. Recognition rate (%) obtained with ZCPA cepstrum and ZCPA cepsrum augmented by delta-cepstrum with various derivative 
window lengths under various types of noisy conditions. HMM recognizer is used.
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Fig니「e 4. Recognition rate (%) obtained with ZCPA cepstrum and ZCPA cepstrum augmented by delta-cepstrum with various derivative 
window lengths under various types of noisy conditions. MLP recognizer is used.

ZCPA. However, the trend of MLP recognizer is signif­
icantly different from that of HMM recognizer. There is 
no performance improvement by utilizing dynamic features 
for MLP recognizer. Further, different time-derivative 
window lengths do not make any differences in recognition 
rates. This is because the delta features obtained by a 

linear combination of static features can be represented 
internally in the hidden representations of the MLP re­

cognizer with static features only. Thus, it is sufficient to 
use only static features for MLP recognition systems.

Even though somewhat longer window lengths are 

preferable for ZCPA with HMM recognizer, it is not suf­
ficient to conclude that this is the best. As mentioned 
before, different lengths of bandpass signals are considered 

in computing the ZCPA output according to the charac­

teristic frequency of the channel while the frame rate is 

fixed. Thus it may be possible to apply different lengths 
of time-derivative window according to the characteristic 

frequency of the channeln [34], [35], and it remains as 
future works.

V. Summary of Results and Comparison with 
Other Front-ends

In this section, the improved performance of the ZCPA 
cepstrum (ZCPAC) is compared with other frontends in­

cluding LPC cepstrum (LPCC), mel-frequency cpstral 
coefficients (MFCC), subband autocorrelation (SBCOR), 

perceptual linear prediction (PLP), and EIH cepstrum 
(EIHC) in various types of noisy environments. Table 1 
summarizes comparison of several features concatenated 
by time-derivative versions of them. Recognition rates are 
obtained by HMM recognizer. The window length of 

time-derivative features is 11 frames, i.e., 111.7 msec for 

all front-ends. For LPCC, speech signal is first multiplied 

by hamming window of 20.3 msec duration every 10.15 

msec, and 8 LPC coefficients and 12 cepstral coefficients 
are obtained successively. For MFCC, 16 m 이-scale 

triangular bandpass filters are used in frequency domain 
to obtain 12 coefficients. To calculate SBCOR, 16 

hamming bandpass filters, which are also used in both 
the ZCPA and the EIH, are used in frequency domain. 

In PLP processing, 16 critical-band filters are used and 
LPC order is set to 8. Performance of the several EIH 

cepstrum were evaluated by varying the number of levels 
and level values, and only the best case among them is 

shown. (7 level crossing detectors are used.)

On clean speech, the recognition of all front-ends are 

similar to each other. As the noise level increases, the re­
cognition rate of the ZCPA becomes higher than that of 
the other front-ends for all kinds of noises. The usefulness 

of the ZCPA in noisy environments is maximum when 

speech data is corrupted by white Gaussian noise. However, 
for speech data corrupted by real-world noises, the 

differences in recognition rate between the ZCPA and the 
others are reduced compared with the other kinds of noisy 

environments. Also, the performance of SBCOR is higher 
than that of PLP below 20dB SNR when speech data is 

corrupted by white Gaussian noise. Howe- ver, PLP 

outerforms SBCOR under real-world noisy environments 
on the contrary.

Summary of recognition rates of MLP recognizer is 

shown in Table 2. Since the incorporation of time- 
derivative features does not improve recognition accuracy 
in MLP system, results obtained with only static features 
are summarized. ZCPA cepstrum outperforms all the 
other features, too. Further, MLP recognizer outperforms 

HMM recognition systems especially at noisy conditions.
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of noisy environments where HMM recognition system used.

(a) White Gaussian noise

SNR(dB) LPCC MFCC SBCOR PLP EIHC ZCPAC

Clean 94.4 97.5 96.4 98.2 97.4 97.6

25 74.4 92.1 94.1 96.0 97.0 96.9

20 38.5 74.0 90.0 85.9 93.5 94.6

15 12.0 38.3 72.7 55.5 84.3 87.0

10 4.2 12.1 43.2 25.7 66.3 72.7

5 2.6 4.9 16.9 7.7 45.3 50.5

(b) Factory noise

Table 1. Comparison of recognition rates (%) obtaied using several features augmented by time-derivative features under various types 
is

SNR(dB) LPCC MFCC SBCOR PLP EIHC ZCPAC

Clean 94.4 97.5 96.4 98.2 97.4 97.6

25 91.2 95.9 94.3 97.1 96.6 97.1

20 79.0 90.5 91.3 95.0 94.4 95.1

15 52.6 67.3 77.8 81.6 86.7 90.3

10 20.7 33.7 50.6 52.4 70.0 75.4

5 7.9 10.5 22.2 25.7 46.3 52.3

(d) Car noise(c) Military operations room noises

SNR(dB) LPCC MFCC SBCOP PLP EIHC ZCPAC SNR(dB) LPCC MFCC SBCOR PLP EIHC ZCPAC

Clean 94.4 97.5 96.4 98.2 97.4 97.6 Clean 94.4 97.5 96.4 98.2 97.4 97.6

25 91.5 96.1 95.0 96.9 96.2 96.7 10 93.6 95.7 95.5 98.1 97.2 97.6

20 81.4 89.2 91.3 94.5 92.2 94.0 5 93.2 95.5 95.1 97.3 97.5 97.2

15 53.5 70.9 76.9 82.4 79.8 85.8 0 91.5 94.6 94.5 96.3 96.1 96.6

10 23.8 39.4 47.6 55.3 61.8 68.0 -5 84.8 90.7 89.6 92.6 93.5 93.6

5 7.7 16.0 23.1 29.0 30.6 37.3 -10 68.2 78.2 75.8 72.9 84.2 86.9

Table 2. Comparison of recognition rates (%) obtained using several
static features are shown.

features under various types of noisy environments where MLP
recognition system is used. Only the remits obtained with 

(a) White Gaussian noise

SNR(dB) LPCC MFCC SBCOR PLP EIHC ZCPAC

Clean 95.0 97.0 • 96.0 98.4 98.3 97.8

25 79.0 93.0 93.8 96.0 97.4 97.6

20 50.7 73.2 85.4 85.6 95.3 95.7

15 24.9 42.8 69.8 61.7 88.1 91.7

10 10.2 21.7 46.6 32.9 77.0 83.1

5 5.1 13.9 26.3 15.8 62.7 71.5

(b) Factorky noise

SNR(dB) LPCC MFCC SBCOR PLP EIHC ZCPAC

Clean 95.0 97.0 96.0 98.4 98.3 97.8

25 91.0 95.5 93.7 97.1 97.7 97.6

20 80.3 86.8 88.8 92.1 95.6 96.6

15 56.3 64.8 74.8 78.7 90.5 93.4

10 29.9 32.1 49.8 51.6 79.0 85.1

5 10.6 12.0 25.0 27.5 63.0 70.2

(c) military operations room noise

SNR(dB) LPCC MFCC SBCOR PLP EIHC ZCPAC

Clean 95.0 97.0 96.0 98.4 98.3 97.8

25 93.0 96.3 94.9 98.2 97.8 97.9

20 82.5 91.0 89.6 93.2 96.2 96.7

15 61.3 73.3 71.3 79.8 90.8 93.2

10 39.6 41.0 41.0 55.0 77.1 83.4

5 17.0 20.3 20.7 32.4 55.5 60.4

(d) Car noise

SNR(dB) LPCC MFCC SBCOR PLP EIHC ZCPAC

Clean 95.0 97.0 96.0 98.4 98.3 97.8

10 95.0 97.2 95.0 98.1 98.4 98.1

5 94.0 94.9 94.1 95.5 97.9 97.7

0 92.8 97.0 91.2 91.8 97.2 97.1

-5 86.8 85.9 84.4 83.4 96.6 96.6

-10 66.4 62.6 66.3 69.4 91.0 93.0
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VI. Conclusions

The ZCPA model based on human auditory periphery 
was proposed as a robust front-end for speech recognition 
systems in noisy environments, and shown to be robust 
to additive white Gaussian noise than both LPCC and 
the E1H in our previous work. In this paper, performance 
of the ZCPA model is further improved and evaluated in 

several real-world noisy environments. For further impro­
vements in recognition performance, several conventional 
speech processing techniques are also incorporated into the 
ZCPA model. Spectral representation of the features are 
extended into cepstral representations, which demonstrates 

better recognition rates in general with less number of 
coefficients. Also, several different lengths of time have 
been tried to obtain good time-derivative features of the 
developed auditory model. Relatively longer length in the 
time-derivative window results in better recognition ac­
curacy with the HMM classifier. However, it does not 
make much differences with the MLP classiHer. 까le MLP 

classifier shows much better recognition rates than the 
discrete HMM classifier in all cases. Also, comparative 
evaluations of the ZCPA model with several feature extr­
action methods demonstrate the robustness of the ZCPA 
model in noisy environments.
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