Abstract
Any classification process using SAR images presupposes the reduction of multiplicative speckle noise, since the variations caused by speckle make it extremely difficult to distinguish between neighboring classes within the feature space. Therefore, several adaptive filter algorithms have been developed in order to distinguish between them. These algorithms aim at the preservation of edges and single scattering peaks, and smooths homogeneous areas as much as possible. This task is rendered more difficult by the multiplicative nature of the speckle noise the signal variation depends on the signal itself. In this paper, LEE(Lee 1908) and R-LEE(Lee 1981) filters using local statistics, local mean and variance, are applied to RADARSAT SAR images. Also, a new method of speckle filtering, EPOS(Edge Preserving Optimal Speckle)(Hagg & Sties 1994) filter based on the statistical properties of speckle noise is described and applied. And then, the results of filtering SAR images with LEE, R-LEE and EPOS filters are compared with mean and median filters.
SAR 영상은 speckle 잡음의 multiplicative 특성으로 인해 영상 해석에 많은 제약을 받고 있다. Speckle 잡음을 제거하기 위한 방법은 크게 여러 개의 독립 영상을 multi-looks 처리 방법과 디지털 영상 처리 기술을 이용하는 방법으로 speckle 잡음 특성에 따른 비선형필터의 적용이다. 본 연구에서는 국지적 통계 자료를 이용하는 LEE와 Refined LEE 필터 그리고 speckle 자체의 통계 특성을 이용하는 EPOS(Edge Preserving Optimal Speckle)필터를 이용하여 speckle 잡음을 제거하여 SAR 영상의 화질을 개선하고 그 결과를 기존의 mean과 median 필터와 비교하였다.