Influence of Amylose Content on Formation and Characteristics of Enzyme-resistant Starch

  • Published : 1998.12.01


Influence of amylose content on formation and characteristics of enzyme-resistant starch (RS) was investigated by scanning electron microscopy, X-ray diffractometry and differential scanning calorimetry. RS yield increased up to 36.1 % as the amylose content of corn starch increased. Starch granules of Amyulomaize V and Ⅶ were more rounded and smaller than those of regular corn ; some were elongated and had appendages. After autoclaving -cooling cycles, the granular structure disappeared and a continous spongy-like porous network was visible in regular corn starch ; the granular structure was stillevident in parts in Amylomaize V and Ⅶ starches. In all isolated RS residues , the porous structures were no longer visible and more compact formations predominated. While regular corn starch showed an A-type X-ray profile, Amylomaize V and Ⅶ starches exhibited a combination of B- and V-types. Regular corn starch lost most of its crystallinity during autoclaving , but the crystallinity was still left in Amylomaize starches as diffuse or poor B-types. All RS residues showed the presence of poor B-type regardless of amylose contents. Transition temperatures and enthalypy of native starches were a little higher in Amylomaize V and Ⅶ starches than those of regular corn starch . Regardless of amylose contents, all RS residues exhibited an endothermic transition over a similar temperature range (135 $^{\circ}C$~169$^{\circ}C$), with a mean peak temperature of ~154$^{\circ}C$, which is generally foud for retrograded amylose crystallities. Higher transition temperature, enthalypy, and RS yield of AMylomaize V and Ⅶ starches were related granular stability shown by the microscopic and crystallographic studies.