Abstract
The purpose of this paper is to develop a neural network model in order to forecast flood inflow into the reservoir that has the nature of uncertainty and nonlinearity. The model has the features of multi-layered structure and parallel multi-connections. To develop the model. backpropagation learning algorithm was used with the Momentum and Levenberg-Marquardt techniques. The former technique uses gradient descent method and the later uses gradient descent and Gauss-Newton method respectively to solve the problems of local minima and for the speed of convergency. Used data for learning are continuous fixed real values of input as well as output to emulate the real physical aspects. after learning process. a reservoir inflows forecasting model at flood period was constructed. The data for learning were used to calibrate the developed model and the results were very satisfactory. applicability of the model to the Chungju Mlultipurpose Reservoir proved the availability of the developed model.
본 논문의 목적은 다목적 저수지의 홍수유입량 예측을 위한 방법으로 병렬다중결선의 계층구조를 가진 신경망이론에 의하여 홍수시 불확실한 비선형시스템의 특성을 같는 저수지 유입량 예측모형을 개발하는 것이다. 신경망이론을 이용한 예측모형의 개발을 위하여 역전파 학습알고리즘을 사용하였으며 역전파 학습알고리즘 사용시 흔히 대두되는 지역최소값 문제와 수렴속도의 향상을 위해서 최적화기법인 경사하강법을 이용한 모멘트법과 경사하강법과 Gauss-Newton 방법을 이용한 Leverberg-Marquardt 법을 사용하였다. 모형개발에 사용된 자료는 연속적인 값으로 입력자료와 출력자료를 강우와 댐유입량을 학습시킨 후, 저수지의 홍수유입량 예측을 위한 다층신경망 모형을 구성하였다. 학습시 사용한 자료를 토대로 개발된 모형을 검정한 결과 매우 만족스런 결과를 얻을 수 있었고 실제 충주댐 유역을 대상으로 저수지 홍수유입량 예측결과 모형의 타당성을 입증할 수 있었다.