Effect of Hydrogen Radicals for Ion Implanted CVD Diamond Using Remote Hydrogen Plasma Treatment(RHPT)

  • Won, Jaihyung (Department of Electrical Engineering, Osaka University) ;
  • Hatta, Akimitsu (Department of Electrical Engineering, Osaka University) ;
  • Yagi, Hiromasa (Department of Electrical Engineering, Osaka University) ;
  • Wang, Chunlei (Department of Electrical Engineering, Osaka University) ;
  • Jiang, Nan (Department of Electrical Engineering, Osaka University) ;
  • Jeon, Hyeongmin (Department of Electrical Engineering, Osaka University) ;
  • Deguehi, Masahiro (Central Research Laboratories, Matsushita Electic Industiral Co., Ltd.) ;
  • Kitabatake, Makoto (Central Research Laboratories, Matsushita Electic Industiral Co., Ltd.) ;
  • Ito, Toshimichi (Department of Electrical Engineering, Osaka University) ;
  • Sasaki, Takatomo (Department of Electrical Engineering, Osaka University) ;
  • Hiraki, Akio (Department of Electrical Engineering, Osaka University)
  • Published : 1998.03.01

Abstract

Defects formation of Chemical Vapor Deposition (CVD) diamond on $^4He^{2+}$ irradiation and after remote hydrogen plasma treatment(RHPT) were investigated by cathodoluminescence(CL). As calculated in the TRIM simulation, the light elements of $^4He^{2-}$ can be penetrated into the diamond bulk structure at 3~4 $\mu\textrm{m}$ depth. The effects of the implantation region were observed when 5 keV~20 keV electron energy (insight 0.3~4.0$\mu\textrm{m}$) of CL measurement was irradiated to diamond at temperature 80 K. After the RHPT, rehybridization of irradiation damaged diamond was studied. The intensity of 5RL center(intrinsic defect of C) was diminished. The 2.16 eV center (N-V center) occurring usually by annealing could not be seen after RHPT. The diamond was rehybridized by hydrogen radicals without etching and thermal degradation by the RHPT.

Keywords

References

  1. The properties of Diamond J. E. Field(ed.)
  2. Mater. Res. Soc. Symp. Proc. v.162 A. T. Collins
  3. Phys. Rev. A. v.13 P. T. Dean
  4. Rediat. Effects v.52 R. Karish;T. Bernstein;B. Shapiro;A. Talmi
  5. REp. Prog. Phys. v.42 J. Walker
  6. Surf. Sci v.165 B. B. Pate
  7. Science v.241 J. C. Angus;C. C. Hayman
  8. Diamond Relat. Mater. v.3 W. Engel;D. C. Ingram;J. C. Keay;M. E. Kordsch
  9. Ⅲ. Production of CL G. Davies;The properties of Diamond;J. E. Field(ed.)
  10. SPIE Diamond Optics Ⅲ H. Kawarada;Y. Yokota;T. Sogi;H. Matsuyama;A. Hiraki
  11. J. Phys. C: Solid state Physics. v.20 A. T. Collins;G. S. Woods
  12. Rev. Phys. Allp. v.15 J. Mazzaschi;J. C. Brabant;M. Brousseau;F. Viollot
  13. J. Phys. C. v.19 A. T. Collins;P. M. Spear
  14. J. Phys. C. A. T. Collins;G. Davies;H. kands;G. S. Woods
  15. J. Appl. Phys v.69 J. Ruan;W. J. Choyke
  16. J. Phys. D. v.20 A. T. Collins;M. Stanley;G. S. Woods
  17. Soviet Phys. -Semicond v.16 A. M. Zaitsev;A. A. Gippius;V. S. Vavilov
  18. Phys. Rev. B. v.39 L. H. Robins;L. P. Cook;E. N. Farabaugh;A. Feldman
  19. Kiamond and Related materials v.2 R. Kalish
  20. Appl. Phys. Lett v.68 J. H. Won;A. Hatta;H. Yagyu;N. Jiang;T. Ito;T. Sasaki;A. Hiraki
  21. Appl. Surf. Sci v.60;61 M. Mitsuhashi;S. Kawarada;S. Ohya;F. Togashi
  22. Appl. Phys. Lett v.66 Naesung Lee;Andrzej Badzian
  23. Radiat. Effects Lett. v.76 J. E. Prince