해양 갈조류인 톳의 고정화된 생물질에 의한 구리의 생흡착

Biosorption of Copper by the Immobilized biomass of Barine Brown Algae(Phaeophyta) Hizikia fusiformis

  • 이민규 (부경재학교 화학공학과) ;
  • 박경태 (부경재학교 화학공학과) ;
  • 감상규 (제주대학교 환경공학과)
  • 발행 : 1998.04.01

초록

제주도 근해에서 다량 채취되고 있는 해양갈조류인 톳의 살아있지 않은 건조한 생물질을 Ca-alginate법(Ca-ALG), Ba-alginate법(Ba-ALG), polyethylene glycol법(PEG), $\kappa$-carrageenan법(CARR) 등으로 고정화시켜 고정화방법에 따른 Cu의 흡착기능을 검토하였다. 생물질의 첨가량이 증가함에 따라서 Cu의 제거율은 증가하였으나 흡착량은 감소하였다. 그러나 초기농도가 증가함에 따라서는 cu의 흡착량이 증가하였다. 고정화법에 따른 Cu의 흡착량은 Ca-ALG>Ba-ALG>PEG>CARR순으로 감소하엿다. 고정화된 생물질에 으한 Cu의 흡착은 Freundlich 흡착 등온식 보다는 Langmuir 흡착 등온식을 잘 따름을 알 수 있었다.

It was investigated the biosorption performances of copper by the immobilized biomass of nonliving marine brown alge h. fusiformis by each of the Ca-alginate method(Ca-ALG), Ba-alginate method(Ba-ALG), polyethylene glycol method(PEG), and carrageenan method (CARR). The copper removal performance increased but the copper uptake decreased as the biomass amount was increased. However, the copper uptake by the immobilized biomass increased with increasing initial copper concentration. The copper uptake by the immobilized biomass of the immobilization method decreased in the following sequence; Ca-ALG>Ba-ALG>PEG>CARR among the immoblization emthods. The copper uptake by the immobilized biomass followed the Langmuir isotherm better than the Freundlich isotherm.

키워드

참고문헌

  1. Microbial Metal Recovery Microbial oxygenic photoautotrophs (cyanobacteria and algae) for metal ion binging Greene, B.;Barnall, D. W.;Ehrlich, H. L.(ed.);Brierley, C.(ed.)
  2. Process Biochem. v.21 Immobilized algae a review Robinson, P. K.;Mak, A. L.;Trevan, M. D.
  3. Morphology of Plants and Fungi. (4th ed.) Bold, H. C.;Alexopoulus, C. S.;Delevoryas, T.
  4. Immobilization of Ions by Biosorption diversity of biopolymer structure and its potential for ion-binding applications Hent, S.
  5. Biotechnol. Bioeng. v.28 Elimination of bicarbonate interference in the binding of U(Ⅳ) ub mill water ot freeze-dried Chlorella vulataris Greene, B.;Henzl, M. T.;Hosea, J. M.;Darnall, D. W.
  6. Eur. J. Appl. Biotechnol. v.16 Recovery of uranium by immobilized microoranisms Nakajima, A.;Horikoshi, T.;Sakaguchi, T.
  7. Br. Phycol. Soc. Newsl. v.24 Immobilized micro-algae and cyanobacteria Codd, G. A.
  8. Appl. Biochem. Bioeng. v.4 immobilized living cells and their applications Kennedy, J. F.;Cabral, J. M. S.
  9. Trace Metal Removal from Aqueous Solution Recovery of heavy metals by immobilized algae Darnall, D. W.;Greene, B.;Henzl, M. T.;Hosea, J. M.;Mcpherson, R. A.;Senddon, J.;Alexander, M. D.;Thompson, R.(ed.)
  10. Finishers Manage. v.32 Bigger profits through improved wastewater treatment Krambeer, C.
  11. Environ. Eng. Res. v.2 no.3 Biosorption of copper and zinc by biomadd of marine brown algae in Cheju Island Kam, S. K.;Lee, D. H.;Lee, M. G.
  12. J. Korean Fish. Soc. Lead biosorption by biosorbent materials of marine brown algae U. pinnatifida, H. fusiformis and S. Fulvellum Lee, M. G.;Kam, S. K.;Lee, D. H.
  13. Biotechnol. Bioeng. v.43 Biosorption of lead and nickel by biomass of marine algae Holan, Z. R.;Volesky, B.