Effect of Replacing Glutamate-219 with Glutamine or Alanine in M u ri ne Mono-AD P-ri bosyltra nsferase

Murine mono-ADP-ribosyltransferase에서 glutamic acid-219를 glutamine혹은 alanine 으로의 치환에 의한 효과

  • 김현주 (울산대학교 생명과학부)
  • Published : 1998.04.01

Abstract

Two distinct ADP-ribosyltransferases, termed Yac-1 and Yac-2 from mouse lymphoma cells were recently cloned and characterized. Yac-1 enzyme possesses ADP-ribosyltransferases activity. In contrast, Yac-2 has significant NAD glycohydrolase activity and may preferentially hydrolyze NAD. Yac-2 possesses a glutamate at position 219 adjacent to the two consdrved glutamic acid residues. To study the effect of Glu-219 on enzyme activities, Glu-219 was mutagenized to Glutamine (E219Q) or alanine (E219A) using a two-step recombinant polymerase chain reaction procedure. Replacing Glu at position 219 with Gln or Ala resulted in 56 (E219Q) or 66% (E219A) reduction in ADP-ribosyltranferase activity. The NAD glycohydrolase activity of Yac-2 protein were not altered by the mutations. These results indicate that Glu-219 in Yac-2 enzyme plays an important role in ADP-ribosyltransferase, but not NAD glycohydrolase activity.

두 종류의 ADP-riboyltransferase(Yac-1과Yac-2)가 최근 mouse의 임파구로부터 cloning되어 그 특성이 규명되어졌다. Yac-1효소는 ADP-ribosyltransferase활성을 보여주나, 대조적으로, Yac-2는 상당한 양의 NAD glycohydrolase 활성도 소유하고` 있으며 이는 NDA를 우선적으로 가수분해 할 수 있다는 사실을 반영한다. Yac-2는 보존된 두 glutamate에 인접한 위치인 219번에 또 다른 glutamate를 소유하고 있다. 효소 활성에 대한 Glu-219의 효과를 알아보기 위해 두 단계의 재조합 중합효소 연쇄 반응 방법에 의해 Glu-219가 glutamate (E219Q)혹은 alanine(E219A)으로 치환되었다. Gln혹은 Ala으로의 치환결과, ADP-ribosyltransferase활성은 56% (E219Q)혹은 66% *E219A)로 감소하였다. Yac-2단백질의 NAD glycohydrolase 활성은 돌연변이에 의해 영향을 받지 않았다. 이러한 결과는 Yac-2효소의 Glu-219가 ADP-ribosyltransferase 활성에 중요한 역할을 하나, NDA glycohydrolase활성에는 관여하지 않음을 시사한다.

Keywords

References

  1. Adv. Enzymol. v.61 ASP-ribosylation of guanyl nucleotide-binding proteins by bacterial toxins. Moss, J.;Vaughan, M.
  2. Immunochemical Moleculat Genetic Analysis of Bavterial Pathogens. Cholera, the cholera enterotoxins, and the cholera enterotoxin-related enterotoxin family Finkelstein, R. A.;Owen, P.(ed.);Foster, T. J.(ed.)
  3. ADP-ribosylating Toxins and G Proteins. Insights into Signal Transduction. Collier, R. J.;Moss, J.(ed.);Vaughan, M.(ed.)
  4. ADP-ribosylating Toxins and G Proteins. Insights into Signal Transduction. Wick, M. J.;Moss, J.(ed.);Vaughan, M.(ed.)
  5. Advances in Pharmacology v.35 Mono-ADP-ribosylation : A reversible posttranslational modification of proteins. Okazaki, I. J.;Moss, J.
  6. Proc. Natl. Acad. Sci. U. S. A. v.89 Molecular characterization of NAD : arginine ADP-ribosyltransferase from rabbit skeletal muscle. Zolkiewska, A.;Nightingale, M. S.;Modd, J.
  7. Biochemictry v.33 Immunological and structural conservation of mammalian skeletal muscle glycosylphosphatidylinositol-linked ADP-ribosyltransferases. Okazako, I. K.;Zolkiewska, A.;Nightingale, M. S.;Moss, J.
  8. J. Biol. Chem. v.269 Cloning and ecpression of cDNA for arginine-specific ADP-ribisyltransferase from chicken bone marrow cells. Tsuchiya, M.;Hara, N.;Yamada, K.;Osago, H.;Shimoyama, M.
  9. Gene v.164 Sequence of a chicken erythroblast mono(ADP-ribosyl)transferase-encoding gene and its upstream region Davis, T.;Shall, S.
  10. Blood v.88 Molecular characterization of a glycosylphosphatidylinositol-linked ADP-ribosyltransferase from lymphocytes. Okazaki, I, J,;Kim, H. J.;McElvaney, G.;Lesma, E.;Moss, J.
  11. J. Biol. Chem. v.271 Cloning andcharacterization of anovel membrane-associated lymphocyte NAD : arginine ADP-ribosyltransferase Okazaki, I. J.;Kim, H. J.;Moss, J.
  12. J. Biol. Chem. v.268 Intefrin α7 ad substrate for a glycosylphosphatidylinositol-anchored ADP-ribosyltransferase on the surface of skeletal muscle cells. Zolkiewska, A.;Moss, J.
  13. Exp. Cell. Res. v.210 Effect of an argininespecific ADP-ribosyltransferase inhibitor on differentiation of embryonic chicken skeletal muscle cells in culture Kharadia, S. V.;Huiatt, T. W.;Huang, H. Y.;Peterson, J. E.;Graves, D. J.
  14. J. Biochem. v.110 Arginine-specific ADP-ribosyltransferase its acceptor protein p33 in chicken polymorphonuclear cells Mishima, K.;Terashima, M.;Obara, S.;Yamada, K.;Imai, K.;Shimoyama, M.
  15. Eur. J. Biochem. v.204 ADP-ribosylation of actions by arginine-specific ADP-ribosyltransferase purified from chicken heterophils. Terashima, M.;Mishima, K.;Yamada, K.;Tsuchiya, M.;Wakurani, T.;Shimoyama, M.
  16. J. Immunol. v.153 Regulation of cytotoxic T cells by ecto-nicotinamide adenine dinucleotide (NAD) correlates with cell surface GPI-anchored/arginine ADP-ribosyltransferase Wang, J.'Nemoto, E.;Kots, A. Y.;Kaslw, H. R.;Bennert, G
  17. Mol. Microbiol. v.21 Three conserved consensus sequences identify the NAD-binding site of ADP-ribosylating enzymes, expressed by eukatyotes, bacteria and T-even bacteriophages Domenighini, M.;Rappuoli, R.
  18. Biochemistry v.33 Active-site murations of diphtheria toxin catalytic domain : role of hostidine-21 in nicotinamide adenine dunucleotide binding and ADP-ribisylation of elongarion factor 2. Blanke, S. R.;Huang, K.;Wilson, B. A.;Papini, E.;Civacci, A.;Colloer, R. J.
  19. J. Biol. Chem. v.269 Histidine-21 does not play a major role in diphtheria toxin catalysis Johnson, V. G.;Nicholls, P. J.
  20. Mol. Microbiol. v.2 Amino acid sequence homology between the enzymic domains of diphthetia toxin and Pseudomonas aeruginosa exotoxin A. Carroll, S. F.;Collier, R. J.
  21. Sourcebook of Bacterial Protein Toxins Structure and evolutionary aspects of ADP-ribosylating toxins Rappuoli, R.;Pizza, M.;Alouf, J. E.(ed.);Freer, J. H.(ed.)
  22. Proc. Natl. Acad. Sci. v.82 Photoaffinity labeling of diphtheria toxin fragment A with NAD : Structure of the photoproduct at position 148. Carroll, S. F.;McClosky, J. A.;Crain, P. F.;Oppenheimer, N. J.;Marchner, T. M.;Collier, R. J.
  23. J. Biol. Chem. v.260 Diphtheria toxin. Effect of substituting aspartic acid for glutamic acid 148 on ADP-ribsultransferase activity Tweten, R. K.;Barbieri, J. T.;Collier, R. J.
  24. Infect. Immun. v.169 Exotoxin A of Pseudomonas aeruginosa : Substitution of glutamic acid-553 with aspartic acid drastically reduces toxicity and enzyme activity Douglas, C. M.;Collier, R. J.
  25. Proc. Natl. Acad. Sci. U. S. A. v.85 Subunit S1 of pertussis toxin : mapping of the regions essential for ADP-ribosyltransferase activity Pizza, M.;Bartoloni, A.;Prugnola, A.;Silvestri, S.;Rappuoli, R.
  26. J. Biol. Chem. v.270 Conservation of a common motif in enzymes catalyzing ADP-ribosetransfer. Takada, T.;Iida, K.;Moss, J.
  27. J. Bio. Chem. v.272 Am 18-kDa domain of aglycosylphosphatidylinositol-linked NAD : arginine ADP-ribosyltransferase possesses NAD glycohydrolase activity Kim, H. J.;Okazaki, I. J.;Takada, T.;Moss, J.
  28. J. Bio. Chem. v.271 Mouse T cell membrane proteins Rt6-1 and Rt6-2 art arginine/protein mono(ADPribosyl)transferase and share secondary sturucture motifs with ADP-ribosylating bacterial toxins Koch-Nolte, F.;Petersen, D.;Balasubramanian, S.;Haag, F.;Kahlke, D.;Willer, T.;Kastelein, R.;Bazan, F.;Thiele, H. G.
  29. Nature v.306 Cholera toxin genes : nucleotide sequence, deletion analysis and vaccine develpment Mekalanos, J. J.;Swartz, D. J.;Pearson, G. D.;Harford, N.;Goyne, F.;Wilde, M.
  30. J. Bacteriol. v.169 Evolutionary origin of pathogenic determinants in enterotoxigenic Escherichia coli and Vibrio cholerae. Yamamoto, T.;Gohobori, T.;Yokota, T.
  31. Nucleic Acids res. v.18 Nucleotide and deduced amino acud seqience of the rat T-cell alloantigen RT6.1 Hagg, F.;Koch, F.;Thiele, H. G.
  32. Proc. Natl. Acad. Sci. U. S. A. v.87 Primary structure of rat RT6.2 a nonglycosylated phosphatidylinositol-linked surface marker of postthymic T Cells. Koch, F.;Hagg, F.;Kashan;Thiele, G.-G.
  33. Nucleic Acids Res. v.18 Nucleotide and deduced amino acid sequence for the mouse homologue fo the rat T-cell differentiation marker RT6. Koch, F.;Hagg, F.;Thiele, H. G.