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ABSTRACT : FORTRAN program PHYLS was developed to model the structures of 2:1 IM and 2M,
phyllosilicates on the basis of geometrical analyses. Input to PHYLS requires the chemical composition and
d(001) spacing of the mineral. The output from PHYLS consists of the coordinates of the crystallographically
independent sites in the unit cell, and such structural parameters as the cell dimensions. interaxial angle,
cell volume, interatomic distances, and deformation angles of the polyhedra. PHYLS can generate these
structural details according to the user’s choice of space group and cation configuration. User can choose one
of such space groups as C2/m., C2. and C2/c and such cation configurations as random and ordered
tetrahedral/octahedral cation configurations. PHYLS simulated the structures of dioctahedral and trioctahedral
phyllosilicates having random tetrahedral cation configuration fairly close to the reported experimentally
determined structures. In contrast. the simulated structures for ordered tetrahedral cation configurations
showed greater deviation from the experimentally determined structures than those for random configurations.
However, if the cations were partially ordered and the sizes of the tetrahedra became similar, the simulated
structures showed little deviations from the experimental ones, which suggests that appropriate application of
PHYLS may be helpful in various investigations on the relationships between structures and physicochemical
properties of the phyllosilicates.
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INTRODUCTION

Many investigators have attempted to find
a universal model capable of predicting the
structure of the phyllosilicate having any che-
mical composition and structural symmetry,
because the accurate experimental determina-
tion of its structure has been often difficult or
sometimes impossible due to its poor crystall-
inity andfor very fine crystal size. Out of a
few, geometrical approach is the most fre-
quently used to construct the structural model.
Franzini and Schiaffino (1963), Donnay et al.
(1964), Tepkin et al. (1969), and Appelo (1978)
analyzed the geometries of the polyhedra to
simulate the structures of phyllosilcates for 1M
trioctahedral micas and Appelo (1978) for 2M,
dioctahedral micas. They successfully predicted
the structural details of the minerals in agree-
ment with the experimentally determined ones,
but their models require the cell parameters
such as b, ¢ and B, which are difficult to
obtain, and insufficiently sensitive to the chemi-
stries of the minerals. Recently, Yu (1990) and
Smoliar-Zviagina (1993) constructed geometrical
structural models for 1M trioctahedral phyll-
osilicates and 2M,, 3T, and 1M dioctahedral
micas, respectively. Both models of Yu (1990)
and Smoliar-Zviagina (1993) can predict the
structures without any difficult-to-obtain struc-
tural parameters, but their models again have
limitations in structural variability and chemical
compositional ranges for application, respec-
tively. The simulation of phyllosilicate structures
had been also attempted with energy minimi-
zation approach. Collins and Catlow (1992)
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simulated the mica structures, using computa-
tional energy and free-energy minimization
techniques, but such energy minimization method
can not predict the structure as accurate as the
geometrical method yet.

The purpose of this study is to construct
an universal model which can predict the
structural details of 2:1 phyllosilicates of any
chemical composition and encode the simulation
procedures of the model in FORTRAN for
quick and easy application. "PHYLS” is the
FORTRAN program for the purpose of such
structural simulation. Input to PHYLS requires
only the chemical composition and d(001)
spacing of the mineral. The d(001) spacing can
be easily determined by powder x-ray diffrac-
tion analyses.

The structural model of this study starts
from the following assumptions now well reco-
gnized to be possibly true among mineralogists:

1. Because of repulsion between the octahedral
cations, the octahedral layer is stretched and
flattened (octahedral deformation), but maintains
regular hexagonal configuration on (001) (Bailey,
1984).

2. 1, temains constant during the octahedral
deformation (Donnay et al., 1964).

3. The orthohexagonal relation a=btan30° is
rigorously obeyed (Sadanaga and Takeuchi,
1961).

4. The misfit in size between the tetrahedral
and octahedral layer is relieved by tetrahedral
rotation and tetrahedral tilting adjusts the
positions of the apical oxygens to be shared
by the tetrahedral and octahedral layer (Bailey,
1984).
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GEOMETRICAL STRUCTURE
SIMULATION

Fig. 1 depicts the outlines of the simulation
processes of PHYLS. The following are the
detailed descriptions of the simulation processes.

Data Input

Table 1 summarizes the necessary input data
for PHYLS. Of all input data, the chemical
composition of the mineral is the most impor-
tant one, because it determines interatomic
distances, the b-dimension, and thus, all the
details of the structural parameters including the
deformation of polyhedra. The chemical
composition excludes some trace, but occasio-
nally found components, such as Li, Ti, Mn,
Zn, Ba, and NH,". If one chooses an ordered
tetrahedral cation configuration, the mole frac-

TRIOC TAHEDRAL LAYER
STRUC TURE ANALYSES

ORDERED CANON CONFIGURATION]
TETRAHEDRAL LAYER STRUCTURE
ANAIYSES

RANDOM CANON CONFIGURATION
TETRAHEDRAL LAYER STRUC TURE
ANALYSES

Fig. 1. Computational scheme of program PHYLS.

tion of each cation in each tetrahedral cation
site must be provided. The optional space
groups of the mineral are C2/m and C2/c for a
random tetrahedral cation configuration and C2
and C2/c for ordered tetrahedral cation con-
figurations. The ordered octahedral cation con-
figuration can be chosen only for trioctahedral
minerals. If one chooses an ordered octahedral
cation configuration, the program will automa-
tically distribute cations over the octahedral
site in such a way that Al first occupies the
site 1 as much as possible, and the remaining
cations evenly distribute over the sites I and II

Cell Dimension Calculation

PHYLS calculates the b-dimension from the
chemical compositions with regression equations.
A number of regression equations have been
reported (Faust, 1957; Radoslovich, 1962; Veitch
and Radoslovich, 1963; Frey et al., 1983; Gui-
dotti, 1984; Drits and Zviagina, 1992). PHYLS
uses the equation of Veitch and Radoslovitch
(1963) for dioctahedral micas and that of Rados-
lovitch (1962) for smectites and trioctahedral
micas, but one may use other equations to
improve specific simulations. The equation of
Veitch and Radoslovich (1963) for dioctahedral
micas is given by

—0.500322—0.44022,3, 1

where

uy = 1.33nx+0.95725,+0.997¢,
w;=0.75% -+ 0.65745,+0.57 1614, 0. 657254,

( 7y is the number of trioctahedral Mg),
Uy = Nt Nyt Ny

U = N g+ Ny, and
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Table 1. Input data for PHYLS.

Codes Descriptions Options
NAME comments on the mineral
MIN type of the phyllosilicates 1=dioctahedral mica
2=trioctahedral mica
3=dioctahedral smectite
4=trioctahedral smectite
IS tetrahedral cation configuration I=random
2=ordered
JOS octahedral cation configuration only for MIN=2 or 4
l=random
2=ordered
IS space group if IS=1,
1=C2/m, 2=C2/c
if 1S=2,
1=C2, 2=C2/c
FRTN4(i) number of the tetrahedral cations i=1 (S0), 2 (AD), 3(Fe’)
in the structural chemical formula
FRTN6()) number of the octahedral cations j=1 (AlD), 2 (Fe’"), 3 (Fe’), 4 (Mg)
in the structural chemical formula
FRTNI(k) number of the interlayer cations k=1 (K), 2 (Na), 3 (Ca)
in the structural chemical formula
FRTN4O(m, 1) fractions of the tetrahedral cations
L only for JS=2
in site I (m=1) and II (Mm=2).
Cp d(001) for 1M or d(002) for 2M;

phyllosilicates

U= 1 (g1art 1 gips s T Mg

The equations of Radoslovich (1962) for trioc-
tahedral micas and smectites are respectively

b=8.92540.0992 — 0.06925,+0.06272,45,
+0.1167 - +0.098% ) and @)

b=8.944+0.096m 45, +0.0967 51+ 0.037n 114,

3

After the calculation of the b-dimension,
the a-dimension is calculated with the following
orthohexagonal relation;

a=btan(30°). C))

The c-dimension is calculated from the given
d(001) and geometrically calculated B, as ela-
borated in the interlayer structure analysis
section:

_ d(001)
c= sin(d) - (&)
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a ,gM1 cell at z=/0\

Octahedral cations

Hydroxyls

Oxygens

®@ O O »

The oxygens shared by the
tetrahedra in Figure 4a

Fig, 2, Geometry of the atomic arrangement in the dioctahedral layer. a: Overall view of the atomic
arrangement projected on (001). b: Octahedral flattening by an angle . c: Increase in the vertical angle of the

octahedral edge by an angle & The octahedra of broken and solid lines represent the octahedra before and after
the vertical angle increase, respectively.
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Dioctahedral Layer Structure Analyses

Fig. 2 shows the geometry of the atomic
distribution in the dioctahedral layer. The
geometry of the umit cell (Fig. 2a) gives

p=V3(d,.+2d,). (6

In equation (6), des and dg are respectively
given by

_ 27,sin 45° — w)

dos 3

, and €]

do= 2\/ ( (1205 )- + (7, cos (45° — @))? sin(60° — v),
¢))

where

7,¢08(45° ~ w)
V (do/2)? + (rocos (45° — @))°

v= GCOS(

) (Fig. 2b).

If the octahedral cations randomly distribute,
I, in equations (7) and (8) may be expressed as

¥o= Zfo‘ Yo (9)

Table 2 lists not only ro; but also r; used
in the calculation. Most of the bond lengths in
Table 2 are adapted from the values of Shan-
non (1976), but some of them are modified
according to the observed interatomic distances
of micas by many investigators. Solutions of
enuations (6) to (9), dos, doi, and w are obtained
by iterative calculation. Then, the shorter octa-
hedral edge length becomes

1, =27,sin(45° — w). (10

Simple flattening by ©, as calculated above
produces a little thinner simulated octahedral
layer than the observed ones. Thus, the simul-
ated octahedra require additional deformation,

Table 2. Interatomic distances used in the struc-
ture prediction by PHYLS.

Interatomic

Atomic Pai
ar Distance (A)

Structural Unit

Tetrahedral layer Si-O 1.610
() Al-O 1.745
Fe’'-0 1.840
Otahedral layer Al-O 1.920
(o) Fe''-O 2.000
Fe’'-O 2.130

Mg-O 2.060

which increases its thickness, while 1, remains
constant. This can be done by increase the
vertical angle of the octahedral edge (Fig. 2c).
Empirical fitting of the calculated z-coordinates
of the oxygens to the reported ones indicates
that the amount of increase in the vertical
angle is proportional to the flattening angle in
such a way that

o= g7 and an
Eu= E(L’/. (12)
Due to the increase in the vertical angle of

the octahedral edge, the octahedral edge lengths
projected on (001) must be recalculated as

follows:
dosz lo’Sin(ﬂ_EO)9 (13)
dy=1,"sin(n— &), and (14)
. das : 2
dy=2sin(60° — ) (7) +(r,cos (45° — @))%, (15)
where

p= asin(vlg-), and
7,c0s (45° — w)

V (dy/2)* + (7r,cos(45° — 0))* |

v= aCOS(
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Fig. 3. Geometry of the atomic arrangement in the trioctahedral layer. a: Overall view of the atomic
arrangement projected on (001). b: Octahedral flattening by an angle ¥. The octahedra of broken and solid lines
represent the octahedra before and after the flattening, respectively.

The shortest distance between the octahedral

oxygen shared by the tetrahedra (Fig. 2a) be-
comes

Yo=V3d,, (16)

and the octahedral thicknesses (Fig. 2¢) are

given by
co= I, cos{p—&y), and (7
cu= 1, cos(n—&y). (18)
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Trioctahedral Layer Structure Analyses

Fig. 3 shows the geometry of the atomic
distribution in the trioctahedral layer. In con-
trast to the dioctahedral layer, the presence of
an additional cation in site II results in equi-
directional repulsion among the octahedral ca-
tions, and maintains oxygen distribution on (001)
as a regular hexagon (Fig. 3a). However, the
repulsion flattens the trioctahedral layer (Fig.
3b). Donnay et al. (1964) described the octahe-
dral flattening with angle ¥, expressed as

. (d,
U= asm(-;), (19)
where do=des=do=dn=l,/ V3, and 1, is obtained
with equation (9). The octahedral edge length
lo (Fig. 3b) is given by

l,=b/3. 20
The octahedral thickness becomes
co=27,cos(T) 2n

The thickness of the octahedral OH edge is
empirically given by

= co{1—0.01d(001)). (22)

If substituted or vacant octahedral sites
have an ordered configuration, the deformation
of the octahedra is somewhat similar to that in
the dioctahedral layer. For an ordered confi-
guration of substituted or vacant octahedral sites,
the projected longer and shorter octahedral
edge lengths respectively become

dy= 2d0( 7}%7) and (23)
d=dy=d,( ) 24)

Fig. 3a shows that the shortest distance
between the octahedral oxygen shared by the
tetrahedra is also given by equation (16).

Tetrahedral Layer Structure Analyses

Random Tetrahedral Cation Configuration

Fig. 4 represents the geometry of the atomic
arrangement in the tetrahedral layer with a
random cation configuration. If the substitution
of Al (or rarely Fe'") for Si in the tetrahedral
sites is completely random, we may assume
that all tetrahedra have the same average shape
and size. If so, the average tetrahedral intera-

tomic distance becomes
Y= Zf/.j”t./‘ (25)

See Table 2 for the values of r. For an ideal
tetrahedron (Fig. 4b),

= 2@ 7, (26)

For an ideal tetrahedral layer, the b-dimension
becomes 2V3/,. However, this is usually larger
than that of the octahedral layer. To compensate
this size misfit, tetrahedra rotate by angle ¢
(Fig. 4a) satisfying the following condition:

a=acos(/,), 27
where

;b

“ 2331,'

For most dioctahedral minerals or the triocta-
hedral minerals having ordered octahedral cation
configurations, equation (27) usually overesti-
mates the rotation angle. Neglecting the effect
of tilting, which also reduces the b-dimension
of the tetrahedral layer, causes the overestima-
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Fig. 4. Geometry of the atomic arrangement in the tetrahedral layer having a random tetrahedral cation

configuration. a: Overall view of the atomic arrangement projected on (001). The thin and thick solid lines

represent orientation of the tetrahedra before and after the rotation by an angle q, respectively. b: An ideal
tetrahedron with edge length 1t ¢: The tetrahedral tilting by an angle 8. The tetrahedron with broken lines
represents the tetrahedron before tilting. The tetrahedra of thin and thick solid lines represent tetrahedra before

and after tetrahedral stretching after tilting, respectively.

tion. To reduce the overestimation of the rota-
tion angle, /, is empirically corrected to 1, = [,/
0.99 for dioctahedral minerals and 7, =/,/
(1-0.01ngq,) for the trioctahedral minerals

having ordered octahedral cation configurations.
Then, the tetrahedral rotation angles for these
minerals become

a=acos(l,). (28)

After the rotation of angle q, the shortest
distance between the apical oxygen (Fig. 4a)

becomes

Y =2/ cos(a)/V3. 29)

The distance given by equation (29) must be

equal to that by equation (16). Otherwise, the
tetrahedra tilt to share the oxygen with the
octahedra. Let

Yo"‘ Y’r

4y = 2cos{a) ’

(30)
which is the distance to be compensated by
the tetrahedral tilting (Fig. 4c). Then, the tetra-

hedral tilting angle is given by

l,+\/§AY) i (
— asin

6=asm( 37,

%) 3D
Due to the tilting, tetrahedra have two different
heights, by and hy (Fig. 4c);

h = l,cos(asin( l,+\/§z]Y)) and

T Vi, (32)
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hy, 9

hy+=5- 1, sin(9). (33)

The tilting without tetrahedral deformation
invokes the b-dimension mismatch. This study
assumes that the bonding between the tetrahedral
cation and the basal oxygens is stretched to
maintain the b-dimension of the mineral (Fig.
4c). Afier the tetrahedral stretching, the tetra-
hedral cation should move to maintain its central
occupancy in the tetrahedron. To describe the
modified position of the tetrahedral cation, the
apparent tilting angle (8”) and the distance
between the tetrahedral cation and apical oxygen
(r.") must be known. Geometrical interpretation
of the deformed tetrahedra should give following

relations:

L/(2V3) —V31, sin(g— 8)/2
an h,— I tan 6/(2V3)

6= at ) (34)

where

6= atan(sin(8)), and ¢= asin(—%)

.3 _ tand
Y = 4C080(hh W) (35)

With 8° and r,” from equations (34) and (35),
di; and dz in Fig. 4c can be calculated:

dyy= 271'3' — —gf— sin(#), and (36)
dy= 7% + - sin(6). 37)

Ordered Tetrahedral Cation Configuration

Fig. 5 represents the geometry of the atomic
arrangements in the tetrahedral layer with an
ordered cation configuration. This study allows
only cation ordering between sites I and II to
maintain C2 or C2/c symmetry. The method of
most structural refinement of the tetrahedral

layer with an ordered cation configuration is
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Fig. 5. Geometry of the atomic arrangement in
the tetrahedral layer having an ordered tetrahedral
cation configuration. a: Overall view of the atomic
arrangement projected on (001). The positions of the
basal oxygens and interlayer cations are not depicted.
b: Tetrahedral tilting by angles 81 and 52. The
tetrahedra  with broken lines represent tetrahedra
before tilting. The tetrahedra of thin and thick solid
lines represent tetrahedra before and after tetrahedral
stretching after tilting, respectively.

similar to the refinement of the layers with
random cation configurations, but separate cal-
culations of the average tetrahedral interatomic
distances, edge lengths, and tilting angles are
necessary due to two different sizes of the
tetrahedra of sites I and 1I.

The average bond lengths of sites I and II
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respectively become

ran= thl s jri.) and (38)

r,2=2f,2,j7’,‘,. (39)
The edge lengths, 1y and lp, of the tetrahedra
of sites I and II can be calculated using
equation (26). The rotation angle of the tetra-
hedra is given by equation (27) or (28), but
Fig. 5a indicates that the argument of equation
(27) must be replaced with

. b
=

The distance compensated by the tetrahedral
tilting is also defined by equation (30), but YT
in equation (30) must be modified to

_ ({1 +1p)cos (a)

(40)
The tetrahedra of sites I and II must tilt to
share O2 and compensate the distance AY,

satistying the following two conditions (Fig.
5b):

ln cos(e+38) =1, cos(e+8,) and 41)
ly(sin(e+ 8,) —sin(e)) + I p(sin(e + 8,)
—sin(g))=24Y, 42)
where
= asin(%).

Iterative calculations of equations (41) and (42)
give 8 and 8. As a result of the tilting,
tetrahedra of sites 1 and II should have the
same lower height given by

=1, cos(e+8)). (43)

However, the tetrahedra of sites I and II should

— 55 —
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have two different higher heights (Fig. 5b);

A =h;+ 9 /, sin(8,) and

hh2= h[‘}'? 1,2 Sin(52).

The different heights of the tetrahedra of sites
I and II destroy C2 or C2/c symmetry of the
mineral. Thus, the phyllosilicates having an
ordered tetrahedral cation configuration can not
have C2 or C2/c symmetry without further
tetrahedral deformation. It is believed that this
is the case for naturally occurring phyllosilicates
having an ordered tetrahedral cation configura-
tion (Guggenheim and Bailey, 1975). To main-
tain C2 or C2/c symmetry of the mineral,
PHYLS assumes that the tetrahedra deform to
have the same higher height, given by

_ hnthy

(44)
The tetrahedral ‘tilting causes tetrahedral stret-
ching described with the apparent tilting angles
and the distances between the tetrahedral cation
and the apical oxygen at sites I and II. Those
parameters are given by

/] '=atan 111/(2@)_\/—31,15in(¢—61)/2
! hy— 1, tan 6,/(2V3)
and (45)
. L/ (2V3) —V31,sin(p—8))/2
02 = ”ta“( =Ty tan 0,/ (2V3) ) (46)
where
8, = atan(sin(3,)),
0, = atan(sin(8,)), and
p= asin(%).
. 3 _ Iptané,
v = Tcos @, (h, 3 )} and 47
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[ ,Qtan 92

2V3

.3 3
7' = Joosg; ) (48)

With 8,7, 827, 1", and 12" from equations (45)
to (48), dis', dia", &2, and do" in Fig. 5b can
be similarly calculated to the equations (36)
and (37);

i

[

d{:;:m— 3 sin(8,"), (49)
11 Ly 7:2' . .

ds=5y5"3 sin(8,), (50)

d{z=%+ Té‘ sin(4,), and (51
1l Ip rp o .

dip= 73* + 3 sin{f,’). (52)

Interlayer Structure Analyses

Random Tetrahedral Cation Configuration

The tetrahedral tilting shifts the interlayer
cation to the position of O2 from the center of
the inner triad of the basal oxygens in Fig. 4a.
Fig. 6 depicts how the interlayer cation is
shifted. The shift distance can be calculated
with

_ d(001)460~2h, _ 2(hh’"h1)
@ 2 )
hh“h/
. 53
( Q3l,sin(60°—a)) 53
Then, the interaxial angle becomes
l,+2d;
B=90°+atan(7°2®—1—)—). (54)

The average interatomic distance between the
interlayer cation and the basal oxygens com-

prising the inner triad is given by

ri=\/—(—————d(001)gc“_2h’ )2+ (%‘1 fd,->2, (55)

Ml o
a
=]
=
N T
ie]
r
i » C'}“
=¥
-
hp-hy
02 _l
d;’
q

Fig. 6. Schematic representation of the interlayer
cation shift, viewed along the direction of a-axis of
a 1M unit cell.

where

g=V31,sin(60° — a).

Ordered Tetrahedral Cation Configuration

Due to the different sizes of the tetrahedra
of sites 1 and i, the direction of the interlayer
cation shift rotates toward the smaller tetrahe-
dron from the direction for a random tetrahe-
dral cation configuration (Fig. 5a). The rotation
angle, X, is given by

(14— 1)sin(30° —a)
(Iy+p)cos@0°—a)

2= atan( (56)

The distance of the interlayer cation shift is
similarly given to equation (53);

_ d(OOl)——CO——Zh, 2(hh_h])
4= 2 - SR
2(hy— k)
( ‘/3(1/1 + ltZ) sin (60O - a) ) (57)
Then, the interaxial angle become
ane 1+ 2d;cos(x)
B=90 +atan(————_ e ) (58)

The interatomic distance is also given by
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Table 3. Atomic coordinate calculation for IM phytlosilicates having a random tetrahedral cation configuration

and space group C2/m.

Sites X y z

M6(T) 0 1/3 0

M6(ID)* 12 12 0

dos+d01 [o) \/g(dm+do> Co
03 9q 2acos(B) — 24(001)
d
OH 0.5~ 5—3 — zocos(B) § 0 2di8}61)
ot 7/ sin{# )sin (o)
M4 ” a 7/ sin(8)cos (@) g TrCOS(E)
b ®* 2(001)

—(zm'za;)cos(ﬁ)%

licos(a)  djzsinle)
01 R R e a

‘(201“21‘44)&5(;5’)%

P d,sin(a)

02 a 1/2

~(za—2m)cos (B <

Mt 0 L

Lsin(e)  dycos(a)
2b b

By
2o 0001)

_he
2at 00D

12

*: For trioctahedral phyllosilicates only.

equation (55), but q in the equation must be
replaced with

e
q=-2—3(ln + 1 ) sin(60° — ).
Coordinates Calculation

Given the above geometrical relations among
the constituent atoms, as shown in Figs 3, 4,
5, and 6, the atomic coordinates of the
crystallographically independent sites of the 2:1
dioctahedral phyllosilicates in space  groups
C2/m, C2, and C2/c may be calculated. Tables
3,4, 5 and 6 summarize the formulations of
the atomic coordinates in terms of the dis-

fances and angles obtajned by geometrical

structural analyses.
Program Output

The output from PHYLS consists of the
atomic coordinates, cell dimensions, interaxial
angle, B, deformation angles, bond lengths, and
cell volume of the mineral. A sample output is
presented in Appendix IIL

RESULTS AND DISCUSSION

Table 7 compares the predicted structures
of 2M; dioctahedral micas by PHYLS with
reported experimentally determined structures,
having a random tetrahedral cation configura-

-~ 57 —
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Table 4. Atomic coordinate calculation for IM phyllosilicates having an ordered tetrahedral cation configuration

and space group C2.

Sites

X y z
M6(1) 0 1/3 0
Mé6(II) 0 2/3 0
Me6(IID* 1/2 1/2 0
dos + dnl C \/g( das + dol) Co
04 2a rocos(B) 2% 2d(00D)
05 X04 ~Yo4 Z04
OH — @ — zoucos (B < 0 __CoH__
2a OH a 24(001)
7 o sin(d, )sin(a)

Ma) Xt 2 Ve 74 sin(8, Ycos (@) e r o cos(6;)

~(2M4(D*zg5)cos(/3)§ b d(001)

+ 7 o’ sin(#, ) sin (a) , ) )

Mall) Xy a Vot rfz'sin(gb-')cos(a) 2oy _T%Z_l

—(z2up— zoy) cos (B)%

lycos(a)  diysin(a)

Xan + - i d
o1 ey 7a a Vi [ysin(a)  dizcos(a) ot s

—(zol—zm(n)cos(b’)ﬁ 2b b (001)

x disin(a)
o0 MiD a 172 Zot 7(_6%1_)

— (20— 2ump) COS (B)—Z*

l,cos(a)  disin(a) .

03 Xpn— 7a - a Vantn Iysin(@)  dicos(a) o1

~(zg— zm(n)cos(ﬁ)-f; 2b b
MI 0 1/2 /2
*: For trioctahedral phyllosilicates only.
tion. Overall, the differences between the shows a relatively large deviation from the

predicted and reported values in Table 7 indicate
that the PHYLS can simulate mica structures
closely to the reported ones. However, there
are a few predicted structural parameters showing
significant differences between calculation and

experiment. The predicted y-coordinate of MI

reported value, suggesting that d; is overesti-
mated. The overestimation of d; is due to the
overestimation of & (see the z-coordinate differ-
ence of O2), which in turn causes the over-
estimation of § and more or less large differ-
ence in the x-coordinates of such structural
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Table 5. Atomic coordinate calculation for 2M; phyllosilicates having a random tetrahedral cation configuration

and space group C2/c.

Sites X y z
M6(1) /4 /12 0
Mo6(ID)* 3/4 1/4 0
(d,/4+d,) c V3d,, Co
04 g racsBy T 2(00D)
3dys /4 + d )2 dys
05 (——Z—a———[—)—zmcos(ﬂ)ﬁ —g—%(TnLdo,) Zo4
dy N4 ‘/§dﬂ Con
OH " g 2oncos(B), 16 24(001)
. 7/ sin(§") cos (30° — a) .
MaQ) o a Lrisn@)sin(0°~a)  ,  ricos(0)
— (24— 2¢5) cos (,5’)% = b 001)
__7/sin(8)cos(30° — @) , ,
M4 o a _ 7/sin(f)sin(30°+ @) Zot _ricos(d)
—(zm(m—zw)cos(ﬂ)f Yo b a(001)
i _ 1sin(30° 4+ @)
‘W; (60 2a ) ’ + licos(30° + a) "
01 138in(60° — @ wmup T T o - h
i “ 4 digcos 60° — @) o doon
*(zol—zm(m)cos(ﬁ)i— b
d»sin(60° — @)
02 Xmy(n - 2 - dycos (60° — a) o hy
Ml
‘(Zoz—zm(m)COS(ﬂ)% b (001)
l,cos(60° — @)
X+ B Pa— y _ 1,sin(60° — a)
03 d13sin (60° - LI) M 2b
+ a + d13COS (600 - Ll') zot
—(za;—zm(m)cos(b’)i b
d,/2+d;
M1 _ GaleTdi < d, V3 1/4
% zycos (B) (_24 + df)’z% /
*: For trioctahedral phyllosilicates only.
sites as M4(I) and O3. To reduce these errors, Even after the empirical correction of &,
one may need to add some empirical correc- the structure prediction might be little improved
tions to the simple geometrical calculation of § due to poor experimental data. The most signifi-
of this study. cant source of error is the chemical composition
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Table 6. Atomic coordinate calculation for 2M,; phyllosilicates having an ordered tetrahedral cation

configuration and space group C2/c.

Sites X

y

Z

The coordinate calculations for M6(I), M6(I), 04, 05, and OH are the same as in Table 5.

+ ry sin(6;")cos(30° — @)

X

M4 a
— (20— 20) COS(B)’CC;
7o sin(6,)sin(60° — @)
Xo4 — 2
M4(II) :
- (zm(m—zm)cos(ﬂ)—g
lpsin(30° + @)
Twan T T o
o1 n djysin (60° — @)
a
- (201—2m<10)cos(/5’)§
. _ d¥sin(60° — @)
02 MUD a
(2~ Zm(m)COS(B)i
l1pcos(60° — @)
Xman T 94
03 + dsin(60° — @)
a
— (2@~ ZM(II))COS(,B)%
_ dy/4+d;sin(30° + 0
MI(1(|<1‘2) a
— zM,cos(B)%
_ dy/4+disin(30° — 1)
MI(lt1<l(2) a

— 2 COS (B)—Z—

rq sin(6, )sin (30° — @) _7q'cos(0,)
Yot b 2 T g(001)
__rp'sin(@,)sin (60° — a) 7o cos(8s')
Yoi b 2o 4(001)
y lpcos (30° + a)
D 5h hy,
+ d% cos(60° ~ a) 2o+ 0001)
b
_ dfcos(60° ) J— hy
Yman T g o d(001)
y lpsin(60° — a)
mn 2b
+ d% cos (60° — a) zon
b
_ \/gdol/4+d;)COS(30°+x) ]/4
 V3d,/4+dicos(30°— ) 14

b

*: For trioctahedral phyllosilicates only.

of the mineral. The chemical compositions of
phyllosilicates are often incomplete and inaccu-
rate. For example, the chemical composition of
the muscovite in Table 7 indicates that charge
neutrality is not satisfied. Incorrect input of the
chemical composition causes incorrect calculation

of the b-dimension, interatomic distances, and

all the other structural parameters.

Table 8 shows the results of the structure
prediction of 2:1 phyllosilicates having ordered
tetrahedral cation configuration. As mentioned
previously, the ordering of the cations in the
tetrahedral sites probably prevents the mineral
from having space groups of C2 or C2/c.
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Table 7. Comparison of PHYLS-predicted structures of 2M; dioctahedral micas having random tetrahedral

cation configurations with experimentally determined structures.

Muscovite (Gven, 1971)

Data: chemical ComPOSiti0n=(K_séNa,])(Al1_9F€3+_02FCZ+_05Mg_0(,)(A1_gssi3_02)0lO(OH)z,
d(002)=9.973 A, space group=C2/c, cation configuration=random

Predicted A* Predicted A

X y z X y z
a 519424  0.0036A Ml .0000 1104 2500 - 0119 -
b 89967A -00113A M6 2500 0833 .0000 0004  -.0001 -
c 200774A  -0.0304A  M4(D) 9768 4303 1353 0120 0008  -.0002
b 96.558° 0.801° M4l 4558 2566 1353 0048  -0018  -.0002
\% 932.10A° 0514° o1 4190 0938 1671 0016 0008  -0014
ro 1.9284 0.004 A 02 7545 3100 1537 0032 -0010  -.0038
n 1.643 A - 03 2655 3726 1671 0133 0021 -.0018
ri 28934  -0.038A 04 9683 4447 0535 .0070 0012 -.0005
a 12.12° 0.77° 05 3843 2500 0535 -0007  -0019  -0002
d 6.61° NA** OH 9577 0646 0506 0013 0016 .0001
w 6.05° NA

Phengite (Gven, 1971)

Data: Chemical composition=(K g7Na 07Ca o2)(Al, 43Fe”" osFe”" oMgo 5)(Al 61Si3 30)016(OH)-,
d(002)=9.923 A, space group=C2/c, cation configuration=random

Predicted A Predicted A

X y z X y z
a 52075A  -0.0037A MI .0000 .1053 2500 - .0089 -
b 9.0196A  -0.01874A M6 .2500 0833 .0000 .0033 -.0008 -
c 19.9669 A 0.0196 A M4(D) 9744 4293 1371 .0112 -.0006 -.0016
b 96.308° 0.539° M4(1I) 4554 2564 1371 .0029 -.0017 -.0017
A% 932.16A° 2.61A° 01 4334 0940 .1680 -.0092 .0009 .0002
o 1.962 A 0.006 A 02 7454 3184 1569 .0082 -.0073 -.0032
t 1.631 A 0.003 A 03 2551 3645 .1680 0225 .0071 -.0002
o 2939 A -0.031A 04 9637 4404 0553 .0065 .0008 .0009
a 8.99° 2.94° o5 3924 2500 0553 -.0009 -.0004 -.0016
d 5.51° NA OH 9547 0675 0527 .0016 .0019 .0001
w 5.03° NA

*A=predicted value minus reported value.
** NA=not available.

Thus, the predicted structure in Table 8 must the predicted and reported ones are more signifi-
be approximate, and the differences between cant than in the case of random tetrahedral
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Table 8. Comparison of PHYLS-predicted structures of 2M1 margarite and IM dioctahedral mica having
ordered tetrahedral cation configurations with experimentally determined structures.

Margarite (Takeuchi, 1965)

Data: chemical composition=(K,oogNa,19Ca_g|2)(A11_993Fe2+,013Mg0_032)(A1l,gqsiu1)010(OH)1,
d(002)=9.566 A, space group=C2/c, cation configuration=ordered, f,s=1.0, f;a=1.0

Predicted A* Predicted A

X y z X y z
a 5.1427A 0.0197A M 0000 0998 2500 - 0056 -
b 8.9073A 0.0213A  MS6 2500 0833 0000 -0018  .0018 -
c 19.2418 A 0.0208A  M4(D) 4401 2522 1429 -0142  -0053  -.0009
B 96.125° 0.625° M4(I) 4650  .9201 1429 0022 -0082  -.0003
\Y% 876.38A° 543A° o1 3651 0876 1764 0084  -0008  -.0024
fo 1.9214 0.009 A 02 2496 7741 1630 -0290  -0098  -0065
Tu 1.610A -0.082 A 03 2803 3758  .1764 0103  -0145 -0033
Te 1.745A 0.043A 04 9651 4429 0558 0104  -0001  .0005
5 2.144 A 03144 05 3866 2500 0558  -0008 -0024 -0011
a 18.53° -1.87° OH 4553 5659  .0530 0061 0035 .0025
5 3.47° NA**
6, 8.71° NA
9 5.61° NA

IM mica (Sidorenko et al., 1975)

Data: chemical composition=(K ssNao3)(Al; g3Fe’" 03Fe”" 03sMgo 1)(Al 19Si351)010(OH)z,
d(001)=9.905 A, space group=C2, cation configuration=ordered,
f(1'55=0.96, fu,A|=0.04, f[1,5i=0.83, fo‘Al=0.l7

Predicted A Predicted A
X y z X y z

a 52029 A 0.0169A  MI 0000 5000  .5000 - -0008 -
b 9.0117A 0.0597A  M6(D) 0000 3333 .0000 - -0045 -
c 10.1632 A 0.0432A  M6(IDH  .0000 6667  .0000 - -0052 -
B 102.943° 1.110° MA4(ID) 4286 3251 2709 0079  -0039  .0019
\% 464.41A° 4574° M4l) 4292 6724 2709 0104 0005  .0012
To 1.932 A -0.008 A o1 .1891 7281 3340 0091  -.0021  .0032
I 1.615A 0.001 A 02 4859 5000 3074 0018  -0003  -0087
To 1.633 A -0.001 A 03 1868 2678  .3340 0234  -0106 -0044
n 2.984 A 0.087 A 04 3527 3054  .1080 0042 -0102  -0002
a 7.80° -1.60° 05 3527 .6946  .1080 0051 -0023  .0010
5 6.25° NA OH 4153 5000 1021 -0092  -0141  -0027
8, 6.94° NA
@ 6.03° -0.87°

*A=predicted value minus reported value.
** NA=not available.
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Table 9. Comparison of PHYLS-predicted structures of 1M trioctahedral micas having random tetrahedral
cation configurations with experimentally determined structures.

Phlogopite (Hazen and Burnham, 1973)

Data: chemical composition=(K 77Na 16)(Mg30)(Al;.05Si2.95)0,0(0H)-,
d(001)=9.998 A, space group=C2/m, cation configuration=random

Predicted A* Predicted A
X y z X y z
a 53174 A 0.0096 A MI .0000 .0000 .0000 -
b 9.2100A -0.0199 A M6(I) .0000 .1667 .5000 i -
c 10.1539 A -0.0008 A M6(II) .0000 5000 .5000 i 0018 -
B 100.053° -0.027° M4 5779 1667 .2306 ’ .0052
3 3 - -
. . . 1758 .0081
\'% 489.63 A 1.93A 01 8287 2299 175 0027 0001 00
To 2.060 A -0.004 A 02 5185 0000 1758 0039 0008 .0083
n 1.644 A -0.005 A 03 .6317 1667 .3950 '0005 ’ .0048
, . 043 A . 0000 4055 i 0047
T; 3(9);31& SSTSA OH 1352 0002 0003
a4 : ' 0022 -
& 0.0° -
Y 59.36° 0.40°
Annite (Hazen and Burnham, 1973)
Data: chemical COmpOSitiOn=(K,ssNa,o7ca,03)(AlegFe3'_19Fez*2_6Mg,12)(AI1_1gsiz_sl)OIO(OH)1,
d(001)=10.092 A, space group=C2/m, cation configuration=random
Predicted A Predicted A
X y z X y z
a 5.3911A 0.0051 A Mi .0000 .0000 .0000 - - -
b 9.3377A 0.1360 A Mé6(1) .0000 1667 .5000 - -.0001 -
c 10.2507 A -0.0176 A M6(11) .0000 .5000 .5000 - - -
B 100.097° -0.533° M4 5754 1667 2264 .0051 .0002 .0010
v 508.04 A° 1.244° o1 8073 2500  .1718 0042 0003  .0048
To 2.113A 0.012A 02 .5573 .0000 1718 .0146 - .0034
T, 1.651A -0.008 A 03 .6300 .1667 .3899 .0009 -.0007 .0005
r 3205A 0.061 A OH 1337 .0000 4010 .0098 - .0079
0.00° -1.5°
8 0.00° -
¥ 58.28° 0.08°
*A=predicted value minus reported value.
cation configurations. The structure of margarite to the structure of Takeuchi (1965) having
in Table 8 is predicted by assuming a perfect C2/c symmetry. Although the predicted margarite
ordering of the tetrahedral cations and compared structure is comparable with Takeuchi’s structure,
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Guggenheim and Bailey (1975) later found
from refinement of the margarite structure that
the mineral has Cc symmetry, due to tetrahe-
dral cation ordering. Guggenheim and Bailey’s
symmetry of margarite is pertinent to the
geometrical analysis described earlier in this
study. Assuming C2 symmetry and partial
ordering of the tetrahedral cations, the structure
of 1M dioctahedral mica, probably representing
illite, is predicted and compared with the
structure of Sidorenko et al. (1975) in Table 8.
Because of the small difference in Al contents
among the tetrahedral sites in IM mica, its
structure prediction agrees much better with
the experimental structure than the margarite
structure prediction agrees with its experimental
counterpart. The predicted structures of the
phyllosilicates having partially ordered tetrahedral
cation configuration may be useful in structural
property related studies and in energy minimi-
zation refinements.

Table 9 summarized the predicted 1M ftrio-
ctahedral mica structures, compared with experi-
mental structures of Hazen and Burnham (1973).
The differences between the predicted and
reported structural values in Table 9 indicate
that the geometrical prediction of IM trioc-
All the
small positive

tahedral mica structure is excellent.
predicted z-coordinates show
errors, indicating that ¥ is slightly overesti-
mated, Using ¥/0.975 instead of the calculated
¥ improves the prediction of the z-coordinates
with insignificant influence on the prediction of
x- and y-coordinates. However, we recommend
PHYLS use an unmodified ¥, as much as

possible to eliminate empirical corrections.

SUMMARY

FORTRAN program PHYLS geometrically

predicts the structures of 2:1 dioctahedral and
trioctahedral phyllosilicates having space groups
C2/m, C2, and C2/c. PHYLS predicts the
structures of 1M and 2M, phyliosilicates close
to the reported ones, whether they are dioc-
tahedral or trioctahedral, when the tetrahedral
cations distribute randomly. On the other hand,
the predicted structures of the minerals having
ordered tetrahedral cation configurations deviate
the
tetrahedral
However, if the ordering of the tetrahedral

from the reported ones due to large

difference in size of the sites.
cations is partial, so that the size difference
between the tetrahedral sites is not large, the
predicted structures are sufficiently accurate to
be used to determine structural and thermod-
ynamic properties.

PHYLS may be improved to predict more
accurate structural parameters and atomic
arrangements in the future. Other regression
equations predicting the b-dimension may be
used to describe the relationship between struc-
ture and chemical composition more accurately.
The tetrahedral rotation and tilting angles may
be solved simultaneously, although the solution
requires non-linear optimization and iteration
programming. An empirical correction to the
estimation of the tilting angle may be necessary,
then all the related structural parameters can
be recalculated with respect to the corrected
tilting angle. Other empirical corrections can
also be adapted in the structural parameter
calculation to finely adjust the predicted struc-
tures to the reported ones. However, we reite-
rate that errors in the reported chemical analyses
may cause significant parameter differences, when
comparing predicted structures with experimen-
tally determined structures. Finally, PHYLS will
need additions to calculate structures of poly-

types 3T, 20r, 6H and 2M2 and symmetries
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Cc, P3,12 and Cm.

a, b, c

Co

CH

2} 2
dle d13

&, df

d(100)
Fou

fis

NOTATION

cell-dimensions

thickness of octahedral layer along
[001]

thickness of octahedral OH-OH edge
along [001]

interlayer cation shift due to tetra-
hedral tilting

long octahedral edge length projected
on (001)

short octahedral edge length projected
on (001)

distance between the tetrahedral cation
and the midpoint of the line connec-
ting the basal oxygens Ol and O3
projected on (001), for a random tetra-
hedral cation configuration

distance between the tetrahedral cation

and basal oxygen O2 projected on
(001) for a random tetrahedral cation
configuration

distances at the tetrahedral sites I and
II between the tetrahedral cations and
the midpoints of the lines connecting
the basal oxygens Ol and O3 pro-
jected on (001), for ordered tetrahe-
dral cation configurations

distances at the tetrahedral sites I and
II between the tetrahedral cation and
basal oxygen O2 projected on (001)
in the case of ordered tetrahedral
cation configurations

d-spacing of (001) planes

mole fraction of the cation i in the
octahedral site

mole fraction of cation j in the tetra-

— 65 —

hedral site, for a random tetrahedral
cation configuration

fn.j fp; mole fraction of cation j in the te-

by

hy

Yolr Y2

7y

Y1

e,

ru .

trahedral site I and II, respectively,
for ordered tetrahedral cation confi-
gurations

higher height of the tetrahedra along
(001}

lower height of the tetrahedra along
[001]

octahedral edge length for trioctahe-
dral minerals

shorter octahedral edge length for
dioctahedral minerals

tetrahedral edge length

number of cation k in the chemical
formula based on O;o(OH):

average interatomic distance between
the interlayer cation and the oxygen
forming the inner triad

average interatomic distance between
the octahedral cation and oxygen
average interatomic distance between
the octahedral cations and oxygen at
the octahedral site 1 and II
interatomic distance between the octa-
hedral cation i and oxygen

average interatomic distance between
the tetrahedral cation and the oxygens,
for a random tetrahedral cation con-
figuration

v, average interatomic distance between

the tetrahedral cation and the oxygens
the tetrahedral site I and II,
respectively, for ordered tetrahedral
cation configurations

in

interatomic distance between the tetra-

hedral cation j and oxygen
7" interatomic distance between the
tetrahedral cation and apical oxygen

after the tetrahedral stretching
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61, 82

7

6y, 0,

g, 6/,

&u

o
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the shortest distance between the octa-

hedral oxygens shared by the tetra-
hedra
shortest distance between the apical

oxygens before tilting

z, atomic coordinates of structural site k

tetrahedral rotation angle

interaxial angle between a- and c-axis
in the second crystallographic
setting

tetrahedral tilting angle before the
stretching of the tetrahedra, for a ran-
dom tetrahedral cation configuration
tetrahedral tilting angle of the site 1

and II before the tetrahedral stre-
tching, respectively, for ordered tetra-
hedral configurations

angle of the short octahedral edge
to (001) before the increasing the
vertical angle of octahedral edge
tetrahedral tilting angle after the
tetrahedral stretching, for a random
tetrahedral cation configuration
tetrahedral tilting angle of site I and
Il after tetrahedral stretching, for
ordered tetrahedral cation configura-
tions

g." angles of the lines connecting the

tetrahedral cation and the apical
oxygen to (001) after the tetrahedral
stretching

amount of increase in the vertical
angle of the octahedral OH-OH edge
amount of increase in the vertical
angle of the short octahedral O-O
edge

rotation angle of the inner triad of
the basal oxygen

angle between [001] and the line

connecting the opposite vertices of

_.66_

the octahedron
@ flattening angle of the octahedron
All angles are in degrees and all distances,
lengths, spacings, and heights are in Angstroms.
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