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Fire Allocation and Combat Networking

Yoon Gee Hong*
Abstract

A stochastic modeling of combat that takes more realistic situations into account
has been studied with deep concern. Either the firing strategies or network
formations are very important elements in the analysis of combat. The first objective
of this study is to evaluate how the different strategies affect the outcomes of
combat. An analytical approach has been used in an attempt tc understand a
small-sized battle. The results are validated and compared with existing simulation
models. Extending to the moderate size of battle may be achieved with ease.
Secondly, an attempt has been made to study and investigate a way to solve combat
in a different fashion. We divided a two-on-two battle into two separate one-on-one
battles and connected them into a network. New elements considered such as delay
time of starting a firefight on a particular node or search time for the next target
when a kill occurs are defined and used as the input parameters. The discussions are
made to validate the hypothesized model and ask if the results are meaningful and

useful in the analysis of combat operations or not.
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1. Introduction

A combat is a set of realizations which contain
unpredictable factors that follow the laws of
probability, resulting in extremely complex random
behaviors. The methodologies adapted in modeling
combat, no matter how detailed or realistic are ad
hoc in nature. Specially, the analytical tools that
have been applied for decades by researchers to
validate, verify, or compare existing models are
scattered.

An attempt has been made by introducing the

renewal process especially to describe  the
stochastic phenomena of a combat situation. The
renewal process 1s a counting process for which
events  are

between  successive

independent and

the times
identically distributed random
variables. Since Ancker’'s voluntary work[1], the
gracdual interest in stochastic combat led analysts
to the development of small to moderate sized
stochastic analytical models.
small sized models

The homogeneous
are presented by some
researchers and the results are shown in the
literatures which are written by Gafarian and
Ancker{10], Kress[18,19], Gafarian and Manion{11],
and Hong[l4]. And two-on-two heterogeneous
model and nonhomogeneous Poisson approximation
are presented by Hongl{14]. Yang and Gafarian[24]
have presented a fast way of approximating the

homogeneous combat situation. Parkhideh and

Gafarian[21] provided an analytical way of solving
heterogeneous  stochastic

and Gafarian[3] provided an

4 many-on-many
combat. Ancker
excellent survey of the works done by themselves
and others on the validity of assumptions of the
Lanchester attrition rates.

Some features  of
SL(Stochastic Lanchester) model

other studying  the
included the
battle with limited ammunition supply [2], the
battle termination time as a random variable [16],
or the kill probability varies over time, .. etc.
Most of the efforts in SL model analysis were
concerned with the cases of the Lanchester square
law combat environment. A brief description of
the square law assumption can be found in

reference [9].

The three firing strategies described in the first
part of this paper differ in what preassigned
target selection a combatant follows. A larger
sized battle may not be possible or may need a
remendous amount of effort to get the output
results desired. The preliminary study on &
many-on-many combat simulation model which
takes the fire allocation strategy into account is
developed(18]. The only real problem in this
simulation model is how to use the model since it
really does not provide us with a "solution” but
rather independent, detailed replications of the

combat. The statistical method is also introduced
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to provide meaningful answers for the output
parameters of interest with an appropriate number
of simulation replications. The results, based on
the experiments in the simulation study, indicated
that the difference of the realizations obtained
from the three proposed strategies taken by one
side, assuming the other side holds a specific one
may be significant. The relative differences of
interest between some combat measures were
shown. The current status of this study is an
intermediate stage for the purpose of finding a
new methodology of modeling a real world
combat situation so called
battles” or "a network of several small combats.”

"a series of min

All subjects encountered in this study are an
extension of the SL model, not the EL(Exponential
Lanchester) or  DL{deterministic
models. The first steps of these preliminary works
are attempted with Two

Lanchester)
caution. separate
one-on-one duels are connected to each other to
form a network. The analytic solutions that are
given in this particular battle are compared to the

existing results.

2. Fire Allocation

Basicadlly, we try to preserve the assumptions
that apply to the Lanchester square law and some
of them are modified to describe the models
developed in this study. The three firing options

considered are random selection (RS), concentrated

power (CP), and evenly distributed power (EP).
The brief descriptions of these options are as

follows:

Random _Selection When two sides are

engaged in combat under the original Lanchester
square law assumptions, we say the model uses
the random selection strategy for both sides.
Concentrated Power @ Every member in the
side A aims at a same target, which means that

they pick an opponent B at random (all are
visible and in range) so they aim at the same
target and start firing with a fixed kill probability.
Each marksman fires until he is killed or the
target is killed by one of his colleagues including
himself, at which time the killng A and
remaining survivors immediately shift to a new
target picked at random if any in his opponent
side and resumes firing.

Evenly Distributed Power @ Every member in

the side A may be partitioned into several small
groups each with preassigned number of
combatants and one of A picks an opponent in
the corresponding small group in the side B. All
are visible and in range within a small combat.
Each marksman fires with a fixed kill probability
on every round fired. Each marksman fires until
he is killed or makes a kill, at which time he
immediately shifts to a new target picked at

random if any are in his opponent’s small group,
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and resumes firing. On the other hand, if there is
no survivor in his opponent’s small group, the
killing small group takes side with their
colleagues in the remaining small groups to assist
them. To do so they distribute into other small
groups so that the small groups that are reformed

have almost same number of combatants.

One of the purposes in the previous study was
to evaluate how the different strategies affect the
outcomes of a combat. The large-sized stochastic
simulation models are developed and have been
discussed in the early version of this study[18].
The implementation of an analytical approach in
the analysis of the fire allocation problem for a
small-sized battle is the first part in this study.
The models allow for an arbitrary interfiring time
random variable for each of the sides, thus
providing for more realism than the classical
stochastic Lanchester square law models, such as

Exponential Lanchester.

The readers who may want to understand more
or are interested in knowing about the aiming
configuration of the three strategies can refer to
the Figure 1 in the literature [18].

The two modes of resuming firing on a
survivor are defined as :

Reselect On : Consider a given marksman fires
at a target. Whether his target is killed by him or

by another marksman on his side, he resumes
afresh the interfiring process on his next available
target.

Reselect  Off :

killed by him, he start afresh the interfiring

If the marksman’s target is

process on his next target, whereas, if his target
is killed by another member of his side, his
remaining time to fire is carried over to his next
target.

2.1 Two-on-Two Analytic Model

There are two combatants on each side, A and
B. The combatants on side A fire continuously
and each combatant follows his own preassigned
firing process which is one of the three fire
allocation strategies, and have identical random
interfiring times X with a probability density

function fx(x) and identical kill probabilites P4

on each launch. Similar assumptions apply for

side B, therefore define the random interfiring

time as Y with pdf gy(y) and single shot hit

probability as Pp And both T4 and Tjg are
the interkilling time random variables for side A
and B, respectively.

Our solution technique has three principal
features. We first considered each combatant
separately as if a combatant is firing at a passive
target. And secondly, we put together every firing
event in time sequence. Finally, we used the

forward recurrence time technique based on each
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finng sequence to write the state probability
equations. The use of either backward recurrence
time or forward recurrence time should not
provide any different results, which convinces us
to introduce the forward recurrence time in this

section.

2.2 Finding Number of Aiming Configurations

Suppose there are m combatants on side A
and n combatants on side B, and they are ready
for the engagement. let k be the number of
combatants on side A aiming at the same target
on side B. There are 36 possible combinations of
firing strategies in a two-on-two battle. Table 1
briefly shows this and also where we consider the

fire resume options ‘on’ or 'off’.

To write the proper state probability equations
it is necessary for us to figure out all possible
aiming configuration combinations that can happen
between two opposing groups. For m-on-n
battle with the random selection(RS) option for
side A it can be obtained as follows:

a*('}(l) © number of ways to get k

combatants out of total m members.

b= (T)  number of ways to get a killer out of
k combatants.

()

* number of ways to get a target out

of n opponents.

k

d= (L) probability that & combatants aim
at a particular target on the enemy side.

l m-k
e = (1—;) probability that (m-k )

combatants aim at some other targets on the

enemy side.

A value of abc becomes the number of aiming
configurations for the given situation and the
amount of de is the probability of aiming at their
corresponding targets. In two other cases either
concentrated power(CP) or evenly distributed
power (EP) strategy, similarity holds except for

calculating the probability of selecting a target
which is just _rlz— For CP case ab, and ¢ are

replaced with f,g, and h, respectively. In the
EP, the probability of selecting a target which is

just % should be considered instead of de .

f= (m) number of ways to get m
combatants out of total m members, which is
one.

_imy .
g= ( 1 ) > number of ways to get a combatant
as a killer out of m combatants.
h= (rll) © number of ways to get a combatant

as a target from n opponents.
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Table 1. Two-on-two combat with various fire

strategies and reselect options.

In two-on-two battle as an example, we shall
just take one of the 36 cases and show how the
solution can be obtained analytically and see if
any other possible ways can be found to extend
the battle size. The case with RS for side A
versus CP for side B both with ’'reselect on'
option is chosen as a pilot study. The state space
diagram is given in Figure 4 below where the
states (2,0), 02), (1,0), and (01) are called
absorbing states and the remaming states are
called transient states.

Side B
o2x (12 (22
0.1 1D 21
Side A
(1,0) (£2,0)

x . Absorbing State

Figure 1. State space for two-on-two combat

2.3 Calculating State Probabilities

To calculate eight different state probabilities
the forward recurrence time is measured at
different time points during a combat. The input
parameters such as interfiring random variables,
single shot kil probabilites, and their
corresponding interkilling pdfs and cdfs are put
together. Of course the firing strategies and firing
configurations for both sides are essential
elements to enumerate all the possible aiming and
killing processes.

(22— 2.1 )
S~ T \\/ /,/

The notations we will use throughout the
remainder of this study will be cxplained when it
is necessary to create and define as we make

Progress.

No killing event has occurred by time ¢, so
the state probability is simply the product of two
squared interkilling complementary  distribution

functions. Then
Pu(t) = F(O*GH* |

where both  F(f) and G(t) are the

complementary  distribution  functions of the
interkilling time random variable for side A and

B, respectively.

by Pyu(t)
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[ % |
| t tl time
There are two distinct ways to reach the state
(2,1); one is that two As aim at the same B and
one of the As kills the target, the other case is
that each of two As aims at a different B and
one of the Bs is killed The notation {24'}
means that the two As have changed their target
since the first kil was made by one of them, and
this may be a meaningful way to manipulate the
system behavior in case the ‘reselect on’ option is
employed. Some other notations used throughout
this study are
{24°}) : two As are alive and have not switched
to other target yet,
A°[A"IBY : two As aim at the same B and one
of them makes a kill,

{ B%} : one B is still alive and has not killed yet,

{A'A%) : two As are alive and one of them has
killed a B,

A°B° : nonkilling A aims at the surviving B.

o— 3

O
Side A {24°%) {24"}
Aims and A[A%1B°
Killing
Side B {2B%) {B%

P(two As aim at the same B and one of As kills
the target in time between ¢; and t,+dt
and no further killing by time ¢ )

RO Gy - =

= e db LG FHE- 603G
where fl +) is the pdf of the interkilling time

random variable for side A .

(2.2) 21 2.0

NP A AN
@K
()—»]

Side A {24°) {A'4A%)

Aims and A°B°

Killing

Side B (2B} { B}

P(two As aim at the different B and one of As
kills the target in time between ¢, and ¢+df
, and no further killing by time ¢ )

= (YL e G R

F(t) Gty

= fe)de, GUDF (-G

t
Hence, ,5(0 - fuﬂz,)F(:)G(n)#(r—rl>G(r>dzl

'3
+ Lﬂﬁaugm—mF(z)Gmdn.

c) Pyt
There are four distinct ways to reach this
state; no matter whether two As aim at the same
B or different B, the second kill may be occurred
by either killer or nonkiller.
I X % ]

t ty L time
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o- Side A (24%) {24")

— Aims and A’L4"1B° A'lA"IB’
() ,4_..,,_}% Killing
Side B (2B°) (B

Side A {24%) {24")
Aims and ATA%IB® A'[AYIB®
Killing
Side B {2B°) {B")
o Side A {24°%) {A'4")
— ~ Aims and A°B° A'14%1B°
O v—j%g Killing
Side B { 2B} { B}
@—K
O—>0)
Side A {24%) {A'A%)
\\ Aims and A’B° A’rA'1B°
T ' - Killing
3 —— ‘
: X Side B {2B% { B%}

P(two As aim at the same B and one of As kills pgv;(f )(i)(%){é—)(;T)f(tl)dle(tl)Gz(tl)f(tz——ll)dtz

the target in time (£, ¢, +df ), and the second Flt) Gt

X R Gty

kill is made by one of As in (&, to+dt ) )
and PE2=(2)( L2 ) 5L Reoanrocan £ ar,

_ (g ) f ]( f )(é—)zﬂrl)dnﬂ FOGHE S (ty- £)dE B~ t1)

G(ry)
x G %o X F) Gl -

. te
Then, Pé}’=j:_£ ARGt~ tF (- 0)G L)ty Now then

3 te
.. . . P = FUDGUDOR - EDF(EG Ede dt s
Similarly, when two As aim at the different B the » fDJ;, ! ! !
j:fn PG EIF -t )Gl de

state probability equations are written as
Therefore, Px(t) = Py’ + PS .
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Side A {(24°) {ALA" (A"
Aims and ,

. .S an A'B° B%A° B°A! where P(B°A°) - ‘1‘
Killing 2
Side B {2B%) { B%} { B%)

> .
O—0) ) e—o~D N
Side A (24°%} {AY A% ) (A"
Aim d . 5

s A A'B° B4 B24°  where P(B‘A) -1
Killing 2
Side B { 2B% { B9 (B

e @
Side A (24°%) {24} {ahy
Aims and 61 240
Killing BA B
Side B { B} {BY
R,
@) e @
-
\\‘\
& ®

Figure 2. Sequence for aiming

d} Pg(t)

This state can be reached by

events occurred by side B. Since B side employed

and killing events in computing the state (0,1) ‘.

CP strategy, the state probability can be obtained
two killing Simply as

¢ At
Ingurwfufu UG 1, 1G - 1 DE(EDF()dt dt
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6) Pol([)

(22»—»(21\—.(

Let us define two state probabilities such as
P and PgP(), where P3'(0) is the
probability that one of As kills a B, then the
surviving B kills two As consecutively in (0,1) ,
and similarly Pé,z "(t) is the probability that one of
Bs kills an A first, next the surviving A kills a B
second, then the surviving B kills the remaining
in (0,¢). Figure 2 shows the aiming and
killing events sequence that can happen during a
combat to reach state (01) if P¢l(£) is to be
computed.
calculate  the  state

Using similar way to

probability as others above, we can write it as

tr
I ff f FUGEUIF, 0G0 gty t)dt dt e,
Lo .
'ﬁfafo j;f(zlu«(r‘—rlm(z,)a(:l)g(rg)g(m £t dt

ty 13
+'["j: L eOF I FG-10F (G- 1,6 g tdndedes,

and

¢ o
p;f’m:zjz fU Lgu,w(;(r.\cm gt EOF (VL by - to)dt lt ot

Then Py(1) = P« PP
f) Py
State (1,1) can be reached through five

s

different aiming and killing sequence and Table 2
presents these in detail.

PIPC 20,00 = gl ) GUDFU DG~ 1 F (- 1) G- ) drydt,,

PPt ) = gl DG F () ED Gt~ EOF( = t)G (- £)ddE
P b6 = REDFU) GGty 1)F £ £)GE- tydt dEy,

PPt ta.0) = S HEIGUDRUEI P~ £)G(L- 1, Dal

PPt 1) = %fm GG F (G-t )R-t )dede,
where g( - ) is the pdf of the interkilling time

random variable for side B .

Aiming and Killing

. Time index
Events

States

one of Bs kills an A,
then surviving A kills
the killing B

one of Bs kills an A,
then surviving A kills
the nonkilling B

(,nH"

(,nH?

: first kitl
two As aim at the

same B and one of occurred at
them kills it, and| {1
surviving B kills onc|Second kill
of As next at 1o,

(111) (3)

two As aim at the|and then
different B and one of {no further
them kills it, and|kills by
surviving B kills | time ¢

killing A next

(1,1)®

two As aim at the
different B and one of
them  kills it, and
surviving B kills
nonkilling A next

(1,1

Table 2. Sequence for aiming and killing events
to reach the state (1,1) . Each state
probability can be computed as just
we have done for other states, these

are

Then the state probability P(f) is the sum of

five possible probability values, and it can be
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written as

b
Pu= [ [ eU0GUOF( R )G () F (- )G 1 )dr
¢ plt
[ R ORUG U I (1R - £1G U tydt e
1
+j:f0 FUDF(IG(L g I E ot P £)G - ot ydiy
14 21
[ I ctostn R 1060 wRDda,

¢ pt
+ fof %f(mc;m>g(rz>F(t2>G<t—tﬁF(r-tl)dndrz

g) P 12(t)
Two Bs aim at an A simultaneously and either

one of them kills it in time (0,¢,) and no

further killing event occurred by time (. The
state probability is now obtained in simple form

as

’4
Polt)-2 J;g(t,)G(tl)F(t[)G(t'—tl)‘F(t)dt,

h) Py

State (10) can be reached through four
different aiming and killing sequence and Table 3
presents these in detail. Each state probability can
be computed as just we have done for other
states, these are

Pt tyta,t) = % FUEDF(Es- £)G(E)g ()G ts~ ty)dlt dbydts,

PRty to s, = 5 [EF(E, 0GR )G e tdt b,

Pt tot5,8) = FIEDF(E)F (-t f - £)GLE,)
X g(t)G (t5-t;)de dt ot 5,

Pt tytst) =2g(0)Gt)G - £ )G E5- £)F ()
XF(E )ty £,)dE dEpdty .

Then the state probability P,(¢) is the sum of

five possible probability values, and it can be

written as

(oAl st

Polti- frfo j; L REORG - £)G U@ G Uyttt ey
t aft afr

[ ROF @G e G ) eIG s et
'3 t f2

+f0£ L AR RGE -t 66U UIGEE - ta)ddade

¢l 143
+fufufu 26(E)GU)GUE - 1)G(Es £))
X P b t)dedt ety

Time
index

Aiming and Killing
Events
one of As kills a B, and
surviving B kills the
nonkilling A, then

remaining A Kkills killing
B first kil

lone of As kills a B, and| %"
surviving B kills the |2t {1
killing A, then remaining | second

A kills killing B kill at

two As aim at the same| 2

B and one of them killsjand then
it, and surviving B Kkills | third kill
one of As next, and then | at time
the remammg A kills| f
killing B

two Bs aim at the same
A and surviving A kills

two Bs consecutively | |

States

(1,00 'V

(1L,0)®

(1,00

(L,o)'¥

Table 3. Sequence for aiming and killing events

to reach the state (1,0).

2.4 Verification and Results

The verification for the models in this study
was done in two phases. First, each model was
checked manually to ensure its proper functioning.
Both transient and absorbing state probabilities
are observed at different times. The transient
state probabilities have to converge to zero at
time infinity and the absorbing state probabilities

should have nonzero probabilities at the end of
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the battle. Furthermore, the sum of all the state
probabilitics must be equal to one at a given
time.

The second part of model verification involves
comparing the output of the hypothesized models
with the simulation results provided by the early
version of this study. Simulations were run for
ten thousand replications each to ensure that the
estimates of all eight overall combat figures of
merit were reliable. The data is shown in Tables
(4], [5], and [6], also in Figures 3 and 4 We
could ascertain the truth of the resuits.

&

T
N

\

Absarbing State Probabitie:

Ly
\

'

|

3

1

I F

l

-
-y

o

A
'r

3] § 2 3 2 5 B 7 8 9 tme

S Measures Simulation
e Analytic {10,000
Models . -
| ~ Replications)
VEM ) 21495 21775
o [Tl 1.4249 1.4709
EIA] 0.9311 0.9187
oAl 0.8951 0.8984
EBI 07234 0.7316
.o | o828 | 08744 |
P(A) 05600 0.5525
PB) 0.4400 0.4475
Table 4. Analvtic Solution VS Simulation ,
two-on-two, RS for side A and CP for
side B, Frlang-2 interfiring time
distribution for both sides, H,=5
and qu.B , Pa” 2 and pB:.l .
1 —e—PpP22
ol o
08 ——P 1t
é 07 \\
% oe b \\
05
203 ‘\
T2 X
o1} A /\?‘\\‘ .
0 A \—*':‘ \\‘\‘*1
0 1 2 El 4 5 6 7 8 9 tirre:

side B, Erlang-2
5 - N o=l
TEAN L_EIBJ
\\

g 16 N
s 14 R
fj 1.2 \\
2 nL TS

1 e N
§ 0.8 )
e R S
£ oo
g
Zoca

0.2

o I O

4} i 2 3 a4 5 6 7 8 g tme

07
06
05
04

03

Standard Deviaton of Survivors

0.2

01

09 ¢
08

s(A
- siAl

Figure 4. Both means and standard deviations of survivors, RS for side A and CP for side B, Erlang-2

interfiring time distribution for both sides, #,=5 and Bg=3 ,p,y~=.2 and pg=.1 .
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T i Simulation
Models \\\ﬂe\ds“res Analytic (10,000

~ Replication)
. _Em. 1.0683 107383
a(T] 0.7248 0.7255

EIA] | ossse | osem
| s | ozese 07339
EBI 13050 | 12984

olB) 08302 | 08343

PA 02300 | 02433
P(B) 0.7610 0.7567

Table 5 Analytic Solution VS _Simulation,

two-on-two, RS for side A and CP
for side B, exponential for side A
and time

Erlang-2 interfiring

distribution for side B, n,=7 and

g3 ' p4 3 andpp=.3 .

3. Combat Networking

It has been asserted by many combat analysts
that combat is a complicated hierarchy network of
small firefights. The firefight is simply regarded
as the basic building block A field experiment
which has clearly shown the network trait and
stochasticity of a combat process in a proper

manner 1s

Ancker{]

scientific the

Rowland{22].

work reported by
has emphasized the
importance of modeling a combat as a series or a
network of several small firefights. e explaing
why the networking is a closely represented way
to formulate the real situation. The formation of
at the

networks lower levels of aggregation

depends primarily on the environmental and

weapon systerns factors, the tactical decisions of

commanders, and the firefight outcomes; Any

changes can lerminate firefights or start new

ones.
There is early fundamental research in
progress on network formation by Bathe[6].

However, we do not have any solid guidance on
how firefights aggregate into larger engagements.
The fundamental elements for network formation
may include environmental factors, routing
channels, mobility, weather, weapon characteristics,
vehicle capabilities, human capabilities, and etc.
And furthermore, the question is what factors or

combinations of factors are important?

3.1 Series of two one-on-one battles

This study is a first step in identifving how
the networking can be achieved as a series of
distinct nodes. A combat is begun with two
separate nodes at the different time as shown in

5. In other words, two-on-two combat is

Figure
divided into two separate small battles each with
one-on—one at the beginning. Either one of the
two starts the conflict at time zero and the other
node begins after a random amount of time delay
(D), and let this time point be ¢, . Suppose the
battle of the first node is over at time t;, and
then the Kkiller starts to search for the next target
in the second node and found it at ¢, = ¢,+S

S is defined to be a search time random variable.

Conversely, the killer in the second node may find

—122—



U =¥d pue gz =Vd ‘' ¢=91 pue ¢ =¥d ‘SopIs Yjog 10} UONNALISIP Swl Jullytsul Z-Juerg ‘g apis J0} D

=

PUB Y 9pIS I0] QY ‘SIPIS YI0( U0 SIOAIAINS JI0] SUONBIASP PIRPURIS PUB SUBDW ‘SoNIiqeqold 218) N g QqEL

1]

£8°0 €20 | S68°0 . 1€60 . £00'L . 2610 | 6SV0 | 1820 | 8980 ; 2000 | 0000 | 0000 : 0000  v68
€480 ¥Z,'0 | §68°0 | 1660 , €00} 1610 | 6510 | 1820 | B9E0 | €000 _ 0000 . 0000 | 0000 . 0.8
2480 | tg/0 | S680 €60 ~ €001 | 16L'0 | 6510 | 1820 | 8980 . ¥00'0 0000 . 0000 | 000D 628
2/8'0 | §240 | ¥6B0 - €660 , €00'F | O06LO | 850 | 0820 | 89E0 | 9000 . 0000 | 0000 | 0000 . 8L
2480 [2L°0 | v68°0  pEEO 200y | 8810 | /S40 | 0820 | §9€0 | 8000 ' 1000 . 1000 | 0000 €&
/80 ; O08/0 | €680 . 9e60 2001 9810 | §St0 | 0820 | 8980 . 2100 1000 | 1000 | 00070 e
1480 €640 | 26870 - 6E60 200} | €810 | €S40 | 08BCO . /90 . 9400 2000 | 2000 | 0000 €9
0480 SEL0 168°0 960 | 200°F | 2840 | VSL0 | 620 | /980 6100 30000 . 000 | 0000 . 909
0/8°0 LELD 1680 © 2v60 . 2004 1840 | 0SIC | 6420 | 2980 0200 - 2000 | 2000 | 0000 . $6§ |
02870 Or.0 | 06870  ¥PE0 2004 | 8/L°0 | 6vi0 | 620 | 9950 200 €000 | €000 . 0000 | 02§
6980 920 | /8870 © 0960 200 | €40 | SpPb0 | 220 | S9€0 | 100 000 | §00°0 | 0000 | 62§ |
29870 69,0 | v88°0 0960 200t | S91°0 | BEL0 | /20 | 2960 €00 6000 | 8OO0 | 000 | BL¥ o
598°0 6,0 | 8/80  9/60 . 1007t | €5b0 | 82b0 | /20 | /980 | 0800  GLOO  SL00 | 2000 | €2¥ ax
198°0 £080 | 0/870 . 6660 00V | 6€L0 | 9LL0 | ¥920 | 8YE0 600 5200 | 9200 | p0OO | ILE [
£58°0 0v8'0 | 2980 ° 920°h  100'h | t2L0 | POLO | SS2°0 | JEEO | SO0 /EO0 . O¥0'0 | 8OO0 | IEE
7580 9980 | S98°0 | 9v0'L  l00'F | b0 | 9600 | 8vg0 | 82E0 9040 /¥00 . SO0 | 100 . 90°E
2580 0880 15870 | 8S0L  100'L | 80LO | 1800 | Pp20 | €2€0 . 4410 €500 ' /500 | ELOO ;. 4B
8v8°0 vi60 | ev80 . S80°L 000 | /60O | 2800 | S€20 | OLEO | 0Zb0 9900 .00 | 6100 | 0.2
9€8'0 (860 | €280 | vvi'h 000k | 900 | v90°0 | €IZ0 | 820  €eL'0 . ¥600  ¥OL'O | 9800 | 62T
080 Lbbh | ¥8L°0 | 8vZh . 000F | 8¥00 | iv00 | €40 | /220 . 98i0  Obb0 LSO | 8200 . 8LF
0vL 0 et bIZO | €lph , 000k | 0200 | 8100 | E€HLO | v¥bO | 2O 26L0 - BIZO | 2840 . EI'L
109°0 6s’L | 62570 €9} | 000L | ¥000 | $000 | /¥0O | 9S00 | /SO0 - 9020 : 8220 | BBED 1o |
HED §98'F | 2/60 €S8l | 0000L | 0000 | 0000 | 00O | /00O | OO | €2k0 : €20 | 2ELO €0
860°0 066L | O0LLO  886’L | 000L | 0000 | 0000 | 0000 | 0000 0000 200 i 0100 | 8/60 | 900
g vis | [813 | [vl3 @ oL tod 0td 2od 0a¢d | tid 2id | led 2zd | ewn
e 2-43 d0 : g epig m ,
_ i zo 50 Z-H3 sy ! v apig

ABajeng

I d | w uonnguisig




the next target at time t, = f3+S . Figure 6
shows six possible ways to reach an absorbing
state when the battle continues until one side is

annihilated.
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Figure 5. Design configuration of two 1-on-1

battles.
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Figure 6. Possible networks of two 1-on-l

battles.

3.2 Random variables and their pdfs and cdfs

We will maintain the notations that are used
up to this point and a few more new notations
are to be defined for the networking problem
These new notations are
p : probability that a combatant aims keeps
engaging with his own his original target given
that a4 new target from other node is appeared,

and ¢ = 1-p

d( +) . pdf of the random variable D,

s( =) pdf of the random variable S,
V=D+T,4 : side A's time to a kill including

a delay, and its pdf is fp(v)=fxd (v) |,
W=D+Tg : side B's time to a kill including a
delay, and its pdf is gp(w)=g+*d (w),
$=S+T, : side A's time to a kill including a
search, and its pdf is fs(®)=f*s ({)

¥Y=S+Tp : side B’s time to a kill including a

search, and its pdf is gc(¥)=g=*s (¥) ,
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where = denote the convolution of two random
variables, and the corresponding complementary

cedfs are  Fp(u),Gp(w),F(®), and Gs(¥),

respectively.

3.3 Calculating State Probabilities
The forward recurrence time technique is

applied here again to calculate the state

probabilities.

a) Pxplt)

No killing event has occurred at any node by
time ¢, so the state probability is simply the
product of four new interkilling complementary
cdfs.

T
[ o)
| ] |

Ji,iJ__ _,if__ —— - — time

0 t, D t

Then Pplt) = FOGOF(OGH(L) .
b) Py () and Py,(t)

There are two distinct ways to reach the state
(21); a kill is made by side A either at first or
second node. We define an event {A,;B;} and
this represents that an A in node [ kills a B in
node j in a given time period.

Now considering all conditions for each of

four combatants at any time point in (0,¢), the

T
- /7(\2:1 /‘»

time

\
P U U
-
-
\,

Ok -

3

state probability can be written as
Py(t) =P(A,B)) + P(A;By)
t
: fof(tl)(;(t)F;(tﬂm)Fp(t)(;p(r):itl

~L
+Jnfp(t;)(j;‘p(h)Fs(t-rl)F‘(r)G(t)dtl.

The state probability F2(¢) can be obtained by

an interchange of f( -) and F.(+) with

gl+) and G.(-) in Py(f), respectively.

Hence we can write it as
Pu(t) =P(BA)) + P(BA,)
24
- | #UDPGS( )G O F p(e)dty

~t
¢ | g0t )F plt)Gs(t-t)GOF (D,

Two consecutive kills are made by the same
side to reach these states. There are four possible

ways of happening this.

Pyt =PLCA B (A,B,)) + P(A,B)"(4,B)]
v P{(A,B) (4,8 + P48 " (4,B)]

'3 '3
vj;)fuf(tl)G(tl)fp(t;)Gn(tz)Fs(t;rt,)dt,dtz
3 fr
o LRGN S  £)G o P el
Y N
. j: L 700006 o0 st 106K Pt

t Al
+f0 fu Tolt )G NG DE Lt t)dtdts,

Similarly, Pp2(t) can be calculated by an
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interchange of f( -) and F.(-+) with g(-)
and G.( ) in Py(1), respectively. So we can

write as

Pelt) =PL(B AN (B,4)) v PLBIAD " (B4)
+PLUBL A (B AN + PLBAL (B, AD]

3 Ly
ffu QUG nl tF pl 6 G b t)dtdE
Iy
. j: fa lEOF () as( b 1) F pl£)G ol £t 1t
¢ plt
oL ant R ot g 1) G

2
L et OF st g R Gkt ¢,

dy Py(t)

Two kills, one by each side, occurred in time
(0,t) . We notice the following situation. Suppose
that a kill is made by A side, for example, then a
killer will search for the next target and find it.
The surviving combatant on side B can meet two
possible occasions here; either he keeps firing at
his original target or he may switch to the
appearing new target from the other node. Let p
be the probability that a combatant aims at his
original target given that a new target is

appeared from other node, and ¢ 1-p
Table 7 presents all possible combinations that
make this situation in a given period.

The state probability can be obtained by summing

all possible cases and we write it as

Pult = PP + PEW + PP + P

Now Pl(]“( t) is the sum of the following two

probability values since there are two nodes and

the first kill can occur from either one of them.

Therefore,

PO = PLABY  (B:421 + PL(AB,) " (B.4)]
'3 153
-p fufuﬂmc;(r;>gp(r;)F,,uL>G5(r- tOFS(t-1) dedt;

ot pfz
+f f Folt WG ol g VR WG -t F (=20 ditydt
0 o

Three other state probabilities are can be obtained
similarly, these are

PR =PLABY " (B,AD) + PL(AB, " (BA))
el
-q J:J;f(m(;u,‘>gD(¢2>F5<c2—[1)Gu» FD(E) diydl;

g f‘jf,.(rlwul,m>gu;msu—rl>(;u CEE(E) diydrs

PLBAD T AB) + PIBAL " (A,B))
: {3
"Pff FUOFU O G p ) F (-1 Gle- 6,0 dfyde s

P

'3 4]
'P.J;,[, Zolt W plt UG - 1)G - 1) dbydr,,

PP = PLBAD CALB] - PLBAD (4B
£ te
“a [ f e FCOR )G, (- £)G (8 drt,

t ple
g fnfa 2ol b E Dt NGt 10U 1)G(8) dide,

! States Aiming and Killing Events
A In a node kills B, then
| start to search the next
(1’1)“) }targm,, and surviving B in ;

other node kills A who is | !
{ the original target

A in a node kills B, then

R

Time index

i

start to search the next]first kill

(1,])(2) target, and surviving B m|occurred  at

! other node kills A who is ty, second |
appeared as a new target ‘

I I . kil at Ly
|

B in a node kills A, then |
!start to search the next|[4nd then no.
S (LD £ itarget, and surviving A in | further kills -
iother node kills B who is|by time ¢
' the original target

B in a node kills A, then
start to search the next
target, and surviving A in
other node kiils B who is
appeared as a new target

(1,1

Table 7. Sequence for aiming and killing events

to reach the state (1,1) .

e) 1)10(t) and Pol(f)
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These probabilities can be calculated simply
from P (t) by considering who is going to be
the next killerr We will detailed

manipulation of the procedure for setting them.

avoid the

We write Pp(t) as

Pyuity = PP « PR + PP + PP

1
where
Pt =PLCAB) "B " (4B 1+ PLLAB) M (B,4) " (4.B))
Lty aly
:pfufu fuf(t,)G\'t\ 8 Ut F (sl ts- tGglty-t)dt\dt oty

(e .
wff L/f,mr(,bu;»ympu;sfs(rg-nmiua rordt et ,

P - PLAB)Y (B4 T (A,BY + PLLARY " (BA) (4,8
ol Ja
a [ f ﬁﬂmc(r])gm;ms(:ﬁ—n)fl,(mc;fr,vrz,) didedr,

L fo t
vq _J(‘ ft IU Folt DGR gt F gty - b st )G e - £5) it it s,

P =PLIBAY (4,8 (4,B)] + PLByA, " (4,B)" (4,B,)]
N opft Al
o [f Lg(tl)F‘tl'vfg(td)(;n(tz)fs(tg tog by -ty deydtdt,

~t ' £y
» | fo Gl EF Gt )G sl by )G gl b £1) dt dtadits,

P =PUBAD " (AB) " AB ¢+ PLBaAL (4B (A,B))]

Al aln pla
=g J’ j@ _Lg([l}l’([l,'fb(tg'lis(tz EEy G ey deydi sty
o ff ., 80 I o e UGty - )G e) ittt
The state probability P, (¢) can be obtained by
and F.(-)

an interchange of f( -) with

g(+)and G.(-) in Py(¢t), respectively.

34 Results and Comparisons

Five cases are implemented to verify and
investigate the system we have studied Table 3
presents the parameter values particularly used in
each these cases. The Gaussian quadrature
method is applied here to solve the integration
equations and the results were outstanding and

there are given as follows

Case 1 Case Il | Case II Case IV : Case V
b
i :
Eriang -2 | Erlang -2 | Exp Erlang -2 | Erlang-2
‘[ e
‘XB Erlang -2 ‘ Eriang -2 i Exp Erlang-2
; .
n 4 1.0 ; 15 15 1.0 10.0
[ B b
[ Hp 20 20 10 80
; S SRR R, B TP R
|
50 i 30 30 50 &
Pa |
ppl = | 50 50 50 90
; .
J2) 000 70 70 80
Exp Exp Exp
y U(,3) UQ2,15)
S A-50 | A=20 A=20
Exp Exp Exp ¢ )
UL3) JUS VAL
EEETIRSIRS R
Table & Parameters that are used for five

different cases.
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Figure 7. Absorbing and transient state probabilities in Case 1L
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Figure 8. Mean number of survivors of side A, Case I vs Case IV(left) and

Case II vs Case I{right)

Figure 7 presents the time trajectory for both
transient and absorbing state probabilities in Case
II, they all behave as we have intended. The
mean number of survivors on side A in Case Iis
compared to that of Case IV where the
distributions are different for both delay and
search time random variables. However, we keep
the true mean values of the random variables
which is 2. It is shown in Figure 8-(a). In Figure
2-(b), two interfiring random variables, Erlang-2
and exponential, are adapted to check the
difference in outputs where the other parameters
are set equal for both case II and case HL This
result supports the importance of the stochasticity
in a realization of the combat analysis. Figures
9-(a) and 9-(h) present the amount of departure
from the models mentioned earlier such that the
firing strategy involved in it. We easily find that
the network of two one-on-one duels shows
significant differences in E[B] when they are
compared to the situations with various firing
strategies.

T el
.
[ K ) [ ]
Ls RS Network
P » [—
e S . EPvs EP |
; Y :
& \:‘ { RS vs AS
) R e
. T |
2 .
»
e R TR I S TR R SRR TR R R
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€10}
= RS
‘;5.% Te U
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~ . etwork
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. U :
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m o, R H
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A
T 3 B " e T ow owm ow W Tow

Figure 9. Mean number of survivors of side B,
Case II-(a) and Case V-(b).
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4. Summary and Conclusions

Fire allocation strategies of combatants are an
important element in the analysis of combat

operation. Three common and reasonable
strategies were defined and examined by applying
a theory of stochastic combat. This study begins
with an analytic approach to see if any of the
general solutions for a large-sized battle could be
The solution procedure for the
two-on-two battle is attempted and the results
are verified.

Three firing strategic options are considered,

feasible.

which are random selection, concentrated power,
and evenly distributed power. Two out of seven
Lanchester square law assumptions are to be
modified in the case for either concentrated power
or evenly distributed power.

Current knowledge and experlence in the

theory of combat inform us to assert two
statements as basic laws. First, a firefight is a
terminating stochastic process, and second, a
combat is to be modeled as a network of several
small battles. We have seen many studies, at
great length, describing the

stochasticity of the firefight process. There is yet

importance  of

much to be done on the second issue. The word
network is intended to imply either simultaneous
or sequential or both type of events which may
or may not be correlated depending on the
particular circumstances being modeled.

This paper was intended to be a part of
intermeciate  works toward building a combat
situation more realistically, so called 'a series of
mini  battles.” A small and simple combat,
two-on-two sized, was chosen to investigate a
way to analyze a combat in this fashion. We
divided a two-on-two combat into two separate
one-on-one battles and connected them in a
network. New elements considered such as delay
time of starting a firefight on a particular node or
search time for the next target when a kill occurs
are defined and used as the input parameters.

Some combat parameters including number of
survivors on both sides, their standard deviations,
winning probabilities, termination time and its
standard deviation are obtained based on the state
probabilities and used to compare with other
options of the same sized combat. The discussions
are made to validate the hypothesized models and

to ask if the results are meaningful and useful in

the analysis of combat operations or not.
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