DOI QR코드

DOI QR Code

Fiber Fabry-Perot type Optical Current Transducer with Frequency Ramped Signal Processing Scheme

  • Park, Youn-Gil (KOREA Telecom) ;
  • Seo, Wan-Seok (Electronics and Telecommunication Research Institute) ;
  • Lee, Chung-E. (FFPI Industries, 909 Industrial Blvd) ;
  • Taylor, Henry-F. (Department of Electrical Engineering, Texas AM University, College Station)
  • 투고 : 1998.01.05
  • 발행 : 1998.09.01

초록

The use of a fiber Fabry-Perot interferometer (FFPI) as an optical current transducer is demonstrated. A conventional inductive pickup coil converts the time-varying current I(t) being measured to a voltage waveform V(t) applied across a piezeolectric strip to which the FFPI is bonded. The strip experiences a longitudinal expansion and contraction, resulting in an optical phase shift ${\phi}(t)$ in the fiber proportional to V(t). This phase shift is measured using a frequency-modulated semiconductor light source, photodiodes to monitor the reflected light from the FFPI and the laser power, and a digital signal processor. Calibration routines compute V(t) and I(t) from the measured phase shift at a l KHz rate. Response to 60 Hz ac over the design range 0-1300A rms is characterized Transient response of the FFPI transducer is also measured.

키워드

참고문헌

  1. Y. N. Ning, C. B. Chu, and D. A. Jackson, Opt. Lett. 16, 1448 (1991) https://doi.org/10.1364/OL.16.001448
  2. C. M. Davis, EPRI Final Report EL-7421, Research Project 2734-3, Herndon, VA: Optical Technologies, Inc. , (1991)
  3. C. E. Lee and H. F. Taylor, Electron. Lett. 24, 193 (1988) https://doi.org/10.1049/el:19880128
  4. R. A. Atkins, J. H. Gardner, W. N. Gibler, C. E. Lee, M. D. Oakland, M. O. Spears, V. P. Swenson, H. F. Taylor, J. J. McCoy, and G. Beshouri, Appl. Opt. 33, 1315 (1994) https://doi.org/10.1364/AO.33.001315
  5. J. J. Alcoz, C. E. Lee, and H. F. Taylor, IEEE Trans. on Ultrasonics, Ferroelectrics, and Freq. Control 37, 302 (1990) https://doi.org/10.1109/58.56491
  6. R. Sadkowski, C. E. Lee, and H. F. Taylor, Appl. Optics 34, 5861 (1995) https://doi.org/10.1364/AO.34.005861
  7. S. Kobayashi, Y. Yamamoto, M. Ito, and T. Kimura, IEEE J. Quantum Electron. QE-18 528 (1982)
  8. L. Goldberg, H. F. Taylor, and J. F. Weller, Electron. Lett. 17,497 (1981) https://doi.org/10.1049/el:19810347

피인용 문헌

  1. Micromachined optical fiber current sensor vol.38, pp.25, 1999, https://doi.org/10.1364/AO.38.005298
  2. Electric current measurement using fiber-optic curvature sensor vol.77, 2016, https://doi.org/10.1016/j.optlaseng.2015.07.009
  3. Fiber Fabry-Perot interferometric sensor for the measurement of current flowing into a small fuse vol.14, pp.2, 2005, https://doi.org/10.5369/JSST.2005.14.2.091
  4. Micromachined low-finesse fabry-perot interferometer for the measurement of DC and AC electrical currents vol.3, pp.1, 2003, https://doi.org/10.1109/JSEN.2003.810112
  5. Fiber Fabry–Perot Interferometric Sensor for the Measurement of Electric Current Flowing through a Fuse vol.46, pp.6A, 2007, https://doi.org/10.1143/JJAP.46.3665
  6. Novel current measurement method based on fiber Bragg grating sensor technology vol.126, pp.1, 2006, https://doi.org/10.1016/j.sna.2005.10.011
  7. A fiber Bragg grating direct current sensor with temperature compensation based on electromagnetic force vol.7, pp.3, 2015, https://doi.org/10.1177/1687814015572516