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A continuum-based configuration design sensitivity analysis method is developed for kinematically
driven mechanical systems. The configuration design variable for mechanical systems is defined. The
3-1-3 Euler angle is employed as the orientation design variable. Kinematic admissibility conditions of
the velocity field are proposed to eliminate the reassembly of a mechanical system after a
configuration design change. Direct differentiation method is used to derive the governing equations of
the design sensitivity. Numerical examples are presented to demonstrate the validity and effectiveness
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backward difference formula(¥% 22 #24)), kinematic admissibility condition(7]78% %

1. Introduction

Analytic sensitivity of a mechanical system due
to a design change provides useful information in
optimization and what-if analysis.

*+ Chonbuk National University
** Hanyang University

Configuration  design  sensitivity  analysis
methods are well developed in the area of the
structural mechanics. Sensitivity analysis of the
static response and eigenvalue were performed in
Refs. 1 through 7. Twu and Choil6] developed a
continuum configuration design sensitivity analysis
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method for static response and eigenvalue. using
the material derivative idea developed for shape
design sensitivity analysis. Two basic assumptions
were used through the development of orientation
design sensitivity analysis : (1) the design com-
ponent rotates without shape changes and (2)
only a small design perturbation is considered. A
line and surface design components are
considered. This paper extends the Chois’ pre-
vious works such that the design components can
undergo shape change for a general design com-
ponent. The extended theory is then applied to
the sensitivity analysis of a kinematically driven
system due to a configuration change.

Design propagation analysis due to a design
change of mechanical system has been presented in
Ref. 8. Design perturbation of mechanical systems
was introduced and all generalized coordinates
were reassembled such that all kinematic con-
straint equations are satisfied. However. the
reassembly process may not yield a unique
position and orientation. To avoid the nonunique
initial position and orientation., this research
proposes a configuration design change method.
The velocity field of the configuration design
change is defined such that all kinematic con-
straints are satisfied, which eliminates the
reassembly process. The body reference frame is
fixed during the design change. As a result, the
generalized coordinates are not affected by the
design change.

The kinematics and design variables of a body
are presented in Section 2. Section 3 defines the
configuration change of a body. The kinematic
admissibility conditions of the velocity field is
presented Section 4. Section 5 derives the
governing equation of design sensitivity due to a
configuration change. The numerical examples are
presented in Section 6. Finally, conclusions are
drawn in Section 7.

2. Kinematics and Design variables of a
body

Orientation matrix of a body in Fig. 2.1 is
given as

aj ap ap
A = lagl ag agx = [f g h] (21)

a3 axp ag

where f, g . and h are the unit vectors on the
axes X', y'. and z’, respectively. The x' —y -z’
frame is the body reference frame and the
X—-Y—Z frame is the inertial reference frame,
The design reference frame on which a design is
defined must be specified. The body reference
frame x"~y"—z" is chosen as the design
reference frame in this paper for convenience,
Note that the position and orientation of the
x'—y =2 frame are not affected by a design
change.

Since the body shown in Fig. 2.1 is a
continuum, each point and orientation on the
domain of the body can be theoretically an
independent design variable. As an example, the
components of vector s, and orientation matrix of

the X" —y""—2z"" frame with respect to the
X' —y — 2z frame are candidate design variables.

The design orientation matrix can be parameterized
by the 3-1-3 Euler angle( 6,, 6,, 6, )as follows.

Fig. 2.1 A body and its new design
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chicls—s 6 chcty —~c8,;86; s 6,chchs sts b,
C = s8,cO;+cbich:s0, —s 6,50, +c el —cbisb
s6.s6y sfcly ¢t

(2.2)

where s = sin and ¢= cos . If every points
and orientations on the body are taken as
independent design variables, these design
variables are too many for a practical design
consideration and there exists many design
constraints among these variables due to the
kinematic admissibility —conditions. Therefore.
configuration design change of a body is proposed
in this research. Benefits of the configuration
design variable is twofold. First, the number of
the design variables can be significantly reduced.
Secondly, the velocity field can be selected such
that kinematic constraints are satisfied, which
eliminates the reassembly process after a design
change.

3. Configuration change of a body

Suppose that only one parameter r defines the
transformation T . as shown in Fig. 3.1,
where ©,. T',, and the x; — y, — 2z, frame denote
the variations of @, I'. and the X" —y” — 2z frame
by the mapping T respectively. The mapping,
N N T
T : [f)o] [ 0] is given by
s | - : _[s. Vaolsy)
[ oS | = TG00 [0] i ’[ U(.)(s;)]
(3.1)

where the subscript “o” denotes the original
configuration and 6 is the 3-1-3 Euler angle for
the x-y-z' frame with Trespect to the
x' —y —z frame. Vo and Ue are the
shape and orientation design velocity fields.
respectively, and are defined by

Fig. 3.1 Configuration change by Mapping T
ds’

Vols,) = 4 (3.2)
Uolsy) = §2 (3.3)

Using the differentiation rule of an orthonor-

mal matrix, 8C is obtained as follows.
8C = o8& C (3.4)

where 8 is the virtual rotation of the
x"—y —z' frame with respect to the x -y —z
frame and the skew-symmetric operator tilde

associated with of a vector a = [ay ay a,} T s
defined as
- 0 -—a, ay,
a=|a 0 —a, (3.6)
—a, a, O

Relationship between 86 and 8& is given in
Ref. 9 as follows.

8¢ ~ R4 (3.7
where
0 —sé, sbs6,
R = [ 0 C01 —001502] (38)
1 0 Caz

Using 60 = Uér from Egq. 3.3, Ea. 3.7 is
written as
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8¢ = RUG& (3.9)

and the differentiation of & with respect to r is
written as follows.

—‘éf— = RU (3.10)
r

4. Kinematic admissibility conditions of
velocity field

When a mechanical system undergoes a con-
figuration design change, the kinematic admissi-
bility conditions at a joint interface must be
preserved so that the kinematic constraints are
satisfled after a configuration design change. To
achieve this goal, the velocity fields must satisfy
some geometric conditions at the joint interface.
Joints were characterized by a set of elementary
constraints(9). The velocity field must be defined
such that kinematic admissibility conditions are
satisfied after a design change. They are derived
in the following subsections.

4.1 Dot-1 constraint

The Dot-1 constraint represents an orthogonal
condition between vectors a; and a;: that is,

d’dl(a;,aj) = aiT a; =0 4.1

Vector a;, a; are changed by configuration

change of bodies i and j using Eq. 3.1 as follow.
a; = AiCij( 00ii + rU(s“,i,-))ai“ (423)
a; = Ai Cii( Ooﬁ + TU(S;ji))aj” (4.2b)

where a; ai" is the vector with respect to

x"—y""—z" frame. After a configuration
change. Eq. 4.1 must be also satisfied with Egs.
4.2 and can be rewritten as

0% (a, a) = (a;)TCJ( O + tU(sq))AT
S )
A,‘C,',‘( 00,',' +r U( Saj,')) a;

4.2 Dot-2 constraint

Orthogonality of the body-fixed vector a; and
the vector d;; between body i and body j can be
written as

0d2( a,;, dij) = a'{‘di,' = 0 (44)

Vector a;, sy, s; are changed by configuration
change of bodies i, j using Eq. 3.1 as follow.

a; = AiCﬁ(aoij + rU(s,',,-j))ai" (453.)
Si} = S;ij + TV(S;ij) (4.5b)
S5 = Soi + tV(sy) (4.5¢)

After a configuration change. Eq. 4.4 must be
also satisfied with Eqs. 4.5 and can be rewritten
as

0%(a;, dy = aiT(fj + Aj(sc;ji + TV(S;ji))
) ] (4.6)
i Ai(soii + TV( Sogj)))

4.3 Spherical constraint

A spherical constraint requires a pair of
points, Oy and O; on two bodies to coincide. A
necessary and sufficient condition is that
d; = 0:ie.,

0°(0,,0)) = r;+ Ajs; —r;—A;s, =0 (4.7)

Vector s;, s;; are changed by configuration
change of bodies i. j using Eq. 3.1 as follow.

Si = S5+ tV(sy;) (4.8a)

Sii = Sgi + 7V (sy) (4.8b)
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After a configuration change, Eq. 4.7 must be
also satisfied with Eqs. 4.8 and can be rewritten
as

¢S(Ou,0“) r; + Ai(st;ii + TV( S(;ii))

— Ii— Ai(st’)ij + TV(S;ij)) (49)

=0

4.4 Distance constraint

A distance constraint requires a specified
distance between a pair of points, 0; and 0; on
two bodies. A necessary and sufficient condition
is that did; = C:le.,

0%(0;,0;,C)=djd; —C = 0 (4.10)

Vector s;.s; are changed by configuration

change of bodies i, j using Ea. 3.1 as follow.

S5 = Soj + V(s (4.11a)

5= Soii + 7V (sg) (4.11b)

After a configuration change, Eq. 4.10 must be
also satisfied with Eqs. 4.11.

5. Governing equation of design sensi-
tivity due to a configuration change

When a mechanical system is kinematically
driven, the governing sensitivity equations are
obtained by differentiating the constraint
equations. Geometry of a system is represented
by the kinematic constraints and the driving
constraints that uniquely determines the system
configuration. The  kinematic and  driving
constraints are expressed in general as follows.

o(r;, A, s, Cy. 15, Ay, 8. Ciint) = 0 (5.1

Taking differentiation of Eq. 5.1 with respect
to z yields

wZY+(mD%?—) =0 (5.2)

where @,, @p. Y. and %— are defined as

o, =1[0, 0, 0 0] (5.3a)
o = [0, 05 O, O] (5.3b)

i, (5.3¢c)
dr; \'( dm\"
() () ]
@ - (&) (<)
T dr dr (5.3d)
.. T . T &T '
(%) (42) |
dr dr
Equation 5.2 can be rewritten as
0,Y = —(op-%?—) (5.4)

Using Eq. 3.2 and Ea. 3.10, %‘3— in Eq. 5.3.d

can be calculated as

V(s)

dD _ |RU(sy) (5.5)
dr V(s;,)
R U(s;o)

Considering all bodies of a system, Eq. 5.4 can
be written as

0,Y = —( 0,42 ) (5.6)

where Y and %Irl are defined as

Y=[YI Yl Y} - YI]" (572
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(<) ]

(5.7b)

6. Numerical Examples

6.1 Slider crank

The slider crank mechanism, shown in Fig.
6.1, is modeled by using three bodies, three
revolute joints, one translational joint, and one
relative driving constraint. The system is Kkine-
matically driven. Joint 1 is driven by sin 2xt.
Analysis was carried out for 2.0 sec. X
-acceleration of body 1 is given in Fig. 6.2.

The position of Joint 1 is moved from point P
to P, as shown in Fig 6.1. The proposed sen-
sitivity analysis is carried out. The analytic
sensitivity and FDM sensitivity of X-acceleration of
the xi —yi frame are shown to be identical in
Fig. 6.3, which validates the purposed method.

Joint2

Fig. 6.1 Slider crank mechanism

w
.
-

Tima(sec)

Acceteration

Fig. 6.2 x Acceleration of Body 1

Sensitivity

oo o5 v by 20
Time(sec)

Fig. 6.3 Sensitivity of x-acceleration of Body 1

6.2 MacPherson strut suspension

A macpherson strut suspension system consists
of a wheel knuckle, a lower control arm, and a
strut, as shown in Fig. 6.4. The chassis and
lower control arm are connected by a revolute
Jjoint. The steering mechanism is modeled by a
rack and pinion, which are connected to the
wheel knuckle by a steering rod. The strut is
mounted on a chassis with a spherical joint.
Since an anti-roll bar would have little influence
on suspension kinematics, this is not included in
the model. For kinematic analysis, the constraint
equations that are generated from two cut-joints,
namely spherical constraint for point E and
distance constraint from point C to point D and
two driving constraint, namely rack and strut
drivers are required. Analyses were carried out
for 10.0 sec. Z-acceleration of knuckle is given in
Fig. 6.6. The position of joint( between lower
control arm and base body ) is defined as design
variable, as shown in Fig 6.5. The proposed
sensitivity analysis is carried out and sensitivity
of acceleration of knuckle with respect to the
position of joint( between lower control arm and
base body ) change is obtained. as shown in Fig.
6.7. The analytic sensitivity and FDM sensitivity
are shown to be identical in Fig. 6.7, which
validates the purposed method.
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Chassis

U control arm
s

Fig. 6.5 Velocity field applied to the model
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Fig. 6.6 Z acceleration of knuckle
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Fig. 6.7 Sensitivity of z acceleration of knuckle

7. Conclusions

A continuum-based configuration design sen~
sitivity analysis method is proposed in this
paper. The configuration design variable for
mechanical system is defined. The sensitivity
equations of motion are formulated, using the
direct  differentiation  method.  The design
sensitivity analysis of a slider crank and
MacPherson strut suspension due to a configuration
design change is successfully performed.
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