Korean J. Crystallography ]
Vol9, No.2, pp.149~152, 1998

The Explicit Expression of the Atomic Thermal Parameters
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Abstract

2
The accurate expression of the anisotropic thermal parameters is either exp (—2a%< hzl;—; +

e L ope B W o U Y2 ol B T oy with the small displacements 1, u,, U, in ab-
B2 o2 a b ac b ¢

solute measure or exp (~27° <hu 4k, 1%, Zhku,u,+2hlou,+2khna,>) with the semall
displacements u., u,, 1, in fractional measure.
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2 z 7'-2 x Uz Uy 4 .
o= exp (277< hzl;—; +k21;—’?’_ +12% +2hk%% +2hlx 2 +21<13blT >y0152, BT Uy, u,,
w7F AEESRE fEsdEdds  exp(-24° < hiu/4k o 2hkuu+ 2hlu 2K, > )
o).
1. Introduction exp(~é—(0%<u12> +QF<ud>+ Qi<ui>+2Q,Q,<u,1,>
The many different and ambiguous expressions +2QQ5<uu5> +20,05<u05>))9,
for the anisotropic thermal parameters: exp [272<ha %0 + k%" 2ud + P ™u + 2kha by

+ 2hla"c*uxu, + 2klh-c‘uy“z>](7]=
exp [-275(U} h%"? + Upyk?b™ + Uny e
+2U shka’b" + 20U, hla’c” + 20, kib"e") 69,

exp[— (ogh?a*? + Ak2b*2 + 2" + Shka*b”
+ehlb’e” + myhla’c),

exp[-277(u; X2+ 0y 2+ ugyr 20 x Yy
UL + 20y 2 and some wrong expressions for them:

exp [ (b Mhyh, +bZh,h, +bFhahy + 2020 by

exp [—%(Buhza'z + B,k + B, Pc?
+2b43h, b, + 250,09,

+2B,,hka’b*cosy + 2B, jhla’c cosF'

113
exp [—(ZZh,-hj,EEj])]@), +2B,Klb’c"cosed JJUD,
p
exp [—an'llﬂhjhj](s), make it difficult for us to identify their correct
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expression. In this paper, the explicit expressions
of the anisotropic and isotropic thermal factors
are shown.

2. Theory

We assume that a sel of lattice planes (hkl)
satisfies the Bragg condition 2d(hkl) sin6(hkl)=A4,
where d(hkl) is an interplanar distance of
planes (hkl), & Bragg angle and A wave length.
The wvector (F‘(hld)=ha—’)‘ +kb*+1c% is parallel to
the scattering vector of the planes (hkl) and
therefore perpendicular to the planes (hkl) and

. e — 1
the relation | d*(hkl)| H0k) holds.

When an atom is lying at an arbitrary peint P
(x, v, z), where x, y, z are fractional coor-
dinates in a unit cell, the vector from an origin

to P is T=xa+yb+23.

Since reflections from all points in one plane
are in phase, it is necessary to consider only the
distanice perpendicular to the plane in dealing
with the phase problem.

The magnitude of T projected on d* is

& o L (hat +kb¥ +168) - (i yb +70)

d# d%

= d(hx +ky +1z)

The path difference introduced hy this dis-
tance for the same incident angle 6 is

—

d* . .
Z(F 1) sin@ = 2d{hx + ky +12) sind

and the phase difference in radians caused by
this path difference for the given wave length A
is

= 2d(hx+ky +17) smai; = ;{(hx+ky+1z)%
=2m(hx +ky +1z}
where the Bragg condition is employed.

The structure factor F is the resultant am-
plitute of diffracted waves with phases ¢, and is

expressed as a complex number.
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[f the atom lying at P(x, y, z} undergoes small

- 1 u
displacements -, ?”

the expression for F is

% by thermal agitation,

F= ig exp[2mi(h +k% D eplig) (1)

and the first exponential factor in Eq. (1) is the
temperature factor.

2-1. When the small displacements w., u, U.
are absolute measure, the displacement vector
is

and the magnitude of U projected on d* is

.
d* = < T Uxo Uy Uso
ol U = d(ha* +kb* +1c¥) - (" 4+ ber?c’)

= My M
=4 k1)
and the path difference introduced by the mag-
nitude for the same incident angle 8 is
Uy Uy Uz, -
Zd(hT +k? +1-C—) sin@,
Emploving the Bragg condition, the cor-
responding phase difference introduced by the
path difference is given as

_ Ug L Up , (Uzy . o 27
$=2dh— Jrk——b +l= ):smlg—;JL

— an S Oy Ty 27

= hT+k . +1 c ] 1

=2a(h > +k% +1%2) =2m(d@* - U)

and therefore the atomic temperature factor in
Eq. (1) can be written as a time-average of exp
[24(3* - T)], ie.,

<exp[2:n:i(c?‘ . ﬁ)]> (2)

where <---> denotes the time average.
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Eq. (2) can be expanded as a power of d* - U

a 77, =2, .
<exp (2mid™ - U) = <exp (2aiM)>

2ni <M>  4n? <M*>
1! 2!

=1+

where <M>=0 since M are equally probable to
be plus and minus for the time average of the
phase change. So for sufficiently small dis-
placements we have

<exp (2m&5= : ﬁ)> =1- 27:%(&’%‘ : ﬁ)z> (3)

The first two terms of Eq. (3) are identical
with the first two terms of the expansion

exp(— <27z2(cF“ : ﬁ)%) = exp (—<27P>)

:lazﬁ%%--‘:.l—Zn%(ﬁ‘-ﬁ)%

and so the atomic temperature factor for suf-
ficiently small displacements can be written as
follows neglecting terms higher than the qua-
dratic in products of displacements

<oxp (2md* - Uy> = exp (<272 <(d* - Up2>) {4)

where

+kuy +12 =)

<@ Up>=<b >

LERELS 12—+2hk——
Nairey a2 i b2 * b

Ux Uy

+2h12E 2 4 2K

Uy W

b <

Therefore the anisotropic temperature factor
is

exp [—2:r3<h2 +k2 L EY el +2hkﬁ%
+2hlﬁﬁ+2k1‘1‘}y LY (5)
Since a-i bml*, c=
a b

systems, Eq. (5) becomes for orthogonal crystal
systems:

W * LY
exp (—27r2<h3a*2u3+k2b 2+ Pcn? + 2hka™d Uxtly

+2hla’ ¢t + 2klb e uyu>)
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2-2. When the small displacements u, 1w, U,
are the fractional mesaure, the displacement vec-
tor is

6 =uH+ uy_b)+ ¢
and the magnitude of U projected on d* is
d—: U= d(ha* +kb* +1{:_’;) - (ud+uyb+1,8)
= d(hux + kuy +1ug)

The path difference introduced by this dis-
placement for an incident angle 8 is

2d(buy + kuy + u,) siné
and the corresponding phase difference for an

incident wave length 2 is

6= 2d(hus + kuy +Luy) smf)z—f
= 2a(hu, +kuy +lu) = 2e(d* - U)

Just like Eq. (4), the temperature factor is ex-
pressed as

<exp (Em(f" : 6‘)> =exp (—27?”’«:((?‘ : ﬁ)2>)
where
(@ Uyp>= <(hus +kuy +Iug)?>
= <hug -+ k% + [Pu2 + 2hku.ay + Zhluaz, + 2kluyug>
Therefore the anisotropic temperature factor
is
exp (-2 <h?ué+kPuf + o, + Zhkuay,

+ Zhluzug + 2kluyuz>)

2-3. The isotropic thermal vibration means the
magnitude of an atomic vibrational amplitude is
the same in all directions. Therefore the fraction

is a function of (hkl). The atomic vibra-

u
d(hkl)
tional amplitude u in absolute measure in-
troduces a path difference and accordingly a
phase difference for the Bragg angle 8

13

d(hkI)

un

1
sind = A =2 (D)

d{hkl)

2d(hkI)
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Like Eq. {4}, we get

27 Ly = _2n3<u3>
<exp(ri)> =exp[-2 7]

The isotropic temperature factor can be ex-
pressed in two different ways:

<u?»

exp[2m* — —]=exp[- -8 <uZr————=

sinO(hi)
H‘Z

using the Bragg condition and

<u®>

exp [—277:2 ——]=exp [—232<u3>(hza"2 +kb 2

+2hka'b’cosy + 2hla"c*cos "+ 2kib e easa’)]

using the formula for interplanar spacing.

3. Conclusion

The general expression for the anisotropic
temperature factor is either

exp(—":r~<h2 u +k2L v Hz_”hkaF

+2h13 “’ +2K12

1y uZ

e

with the small displacements U. Uy U in ab-
solute measure or

exp (-2 aP<hu? +k2ud + Pu, + 2hkuay
+ 2hilu,u, + 2kluguz>)

with the small displacements uy, uy, u; in frac-
tional measure.

Specifically for orthogonal crystal systems, it
is expressed as

2 2 *
exp (—2n2<h2a*2u,2' +k%0" 0 + 1% ug -+ 2hka b,
+2hla"c usu + 2kIb e upn,>)

with the small displacements ux, Uy, U m ab-
solute measure.

The two expressions for the isotropic tem-
perature factor are

exp (—8m<u’> Sl; i =)

=2 7 5 e A
and

EXp [—2n3<u2">(hza"2 +iEb* 4 et
+2hka*h’cosy +2hla"c*cosf” + 2kib ccase)]

where 1 is an absoluie measure.
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