$LaSc_3(BO_3)_4$ 단결정 성장조건

The effect of Thermal Distribution on $LaSc_3(BO_3)_4$ Crystal Growth by Cz Method

  • 장영남 (한국자원연구소 단결정육성팀) ;
  • 배인국 (한국자원연구소 단결정육성팀,한국자원연구소 단결정육성팀, General Physics Institute, RAS, Russia)
  • 발행 : 1998.06.01

초록

현재까지 알려진 마이크로 레이저 호스트용 물질 중에서 가장 우수한 물리적 특성을 갖고 잇는 LaSc3(BO3)4를 융액 인상법 조건하에서 단결정으로 육성시킬 수 있는 최적 성장조건을 규명하고자 하였다. 우선 LaSc3(B(3)4의 융융특성을 규명하기 위해 DTA에 의해 La(BO3)-Sc(BO3)계의 상평형도를 작성한 결과, 이 2성분계에서 LaSc3(BO3)4는 유일한 중간상(Intermediate phase)이었으며, 용융 전에 1495 ±2℃에서 Sc(BO3)와 융액으로 분리되는 비조화 분해반응(peritectic reaction)을 나타내었다 : LaSc3(BO3)4=Sc(BO3)+melt 히타 및 도가니의 상호관계와 단열 혹은 보온상태를 적절히 조절함으로써, 성장로의 열구조를 단결정 성장에 적합하게 하기 위해 열전대를 애프터히타 최상부로부터 융체 내부까지 상승 또는 하강시키면서 4개의 열 구조에 대해 온도분포와 온도구배를 측정 및 산출하였으며, 장단점을 비교하여 최적 성장조건을 확립하였다. LaSc3(BO3)4는 부조화 용융특성이 있으므로 화학양론적 조성에 La(BO3)를 다소 추가하여 특성 성분의 융액을 만들고, 인상속도를 0.7mm/hr이하, 회전속도는 7-10rpm의 환원조건 하에서 단결정을 성장시킬 수 있었다. 또한 결정성장때, Ir 및 백금 도가니를 사용할 수 있으나, 도가니의 수명은 가열/용융/냉각 주기가 최대 8-10회이다. 실험 결과 배플판 직경 등의 애프터 히타의 구조를 변화시킴으로써, 도가니 상부의 온도를 50-100℃ 증가시키는 것이 가능하였으며, 수직 및 수평적 온도구배는 배플판의 직경에 정비례하여 증감하였고, 특히 수평적 온도구배는 열구조에 의한 의존성이 크다는 것이 확인되었다.

The rare-earth orthoborate family, RM3(BO3)4 is known to be the most promising material for the microlaser host. To grow LaSc3(BO3)4 single crystal, the phase relation of the system LaBO3-ScBO3 was investigated by DTA method. LaSc(BO3)4 was the unique intermediate compound in the binary system the peritectic reaction point of which was 1495 ±2℃. Owing to the peritectic behavior of the compound, the crystal growth of the rare-earth Sc-borate was carried out by pulling from the melt-soultion of La1+xSc3-x(BO3)4. The optimal conditions for the growth of LaSc3(BO3)4 were determined by traditional CZ method : pulling speed 0.7mm/hr, rotation speed 7-10 rpm under reduction condition. Pt and Ir crucibles could be used for about 8-10 times of growth. The effect of thermal configurations on the temperature distribution was investigated. A special two-coordinate manipulator was made for the precise movement of thermocouples from the melt to the top of the furnace for several thermal configurations. The radial gradient on the melt surface depends strongly on the construction of the afterheater. On the other hand, the axial gradient was mainly propotional to both the opening degree of baffle plate and the mutual positions of crucible and heater.

키워드