Abstract
This paper presents an on-line scheme for parameter estimation of continuous-time systems, based on the model adjustment technique and the genetic algorithm technique. To deal with the initialisation and unmeasurable signal problems in on-line parameter estimation of continuous-time systems, a discrete-time model is obtained for the linear differential equation model and approximations of unmeasurable states with the observable output and its time-delayed values are obtained for the nonlinear state space model. Noisy observations may affect these approximation processes and degrade the estimation performance. A digital prefilter is therefore incorporated to avoid direct approximations of system derivatives from possible noisy observations. The parameters of both the model and the designed filter are adjusted on-line by a genetic algorithm, A set of simulation works for linear and nonlinear systems is carried out to demonstrate the effectiveness of the proposed method.