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Reconstruction of the State
Variables from the Low Order Controller
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1. Introduction

One of the most fundamental problems in dynamic
system theory is to approximate a high order system
with a low order model. The resulting reduced model can
be used usually to approximate the high order plant or to
design and implement low order controllers. Among
many reduction methods, balancing reduction is the most
popular one and was first introduced by Moore[l1]. When
the system is transformed to the balanced coordinates,
each state is equally controllable and observable and the
reduced model is obtained by truncating the least
controllable and observable states. Although Ilots of
modification have been made for better impulse responses
or for improved low frequency behaviour[2]-{4], the
resulting reduced model usually does not give the
physical information of the states of the system.

Estimation of some desired states is required in many
applications for monitoring and/or for decision making
process. LQG controller can work as an estimator
because it is divided into an estimator and a controller.
The estimator estimates all states of the plant and the
estimated states serve as input of the controller[5). When
balancing reduction is applied to reduce the order of the
controller, the resulting low order controller does not
have the information of the states of the plant because
the balancing coordinates are different from the
coordinates of the given system. There are attempts to
represent the reduced model in the subset of the original
coordinate system[6][7). In their paper, however, it is not
shown which state should be retained or how well the
states of the reduced model approximate those of the
given system.

In this paper, it is shown that the state retaining
reduced model is obtained by transforming the balanced
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reduced model back to a subset of the original
coordinates. Both reduced models are proved to have the
same reduction error. The former has advantage that its
states approximate the states of the given system. In
order to see how well its states approximate those of the
given system, the state reduction error is defined. The
state reduction error of the state retaining reduced model
is proved to be independent of the choice of the other
retained states as long as the order of the reduced model
is the same. The algorithms to get the state reduction
errors and to apply this to model reduction are shown.
Finally, the low order controller to use state retaining
reduced model is proposed.

II. State retaining balancing reduction
Consider a linear time-invariant stable system (A, B,
C) given by

x=Ax+Bu (D
y=Cx 2)
where
AeR"™ BeR™ CeR™
It is well known that the controllability and the obser-

vability grammians of the system satisfy the following
Lyapunov equations:

AW, + W.AT + BBT = ¢ 3

AW, + W.d + C°C =0 4
where W. and W, are the controllability and the
observability grammians, respectively.

There always exists an equivalent system for which
the grammians are equal and diagonal. Such a repre-
sentation is called balanced over the interval (0,). Let
P denote the transformation matrix from the original
system to a balanced system.

x= Px )
The balanced system can be written
*x= A% + Bu 6
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y= Cx (7

where
A=P'AP, B= P 'B, C=CP ®
W. = W, = diag { 6,05,...,0,) 9
The diagonal elements of the grammians of the balanced
system are called Hankel singular values. The
transformation matrix P can be obtained using Laub’s
algorithm([8]. The reduced model of order r is obtained
by eliminating (n-r) number of the least controllable and

observable states corresponding to smaller Hankel
singular values.

;, = A, x, + B,u (10

v, = Crx (11)

v

Note that the system given in (10) and (11) is
asymptotically stable and balanced.

Since the coordinates of the reduced model are
different from those of the original state space model, a
coordinate transformation to the original coordinates is
needed. Since the least controllable and observable states
are eliminated,

x7+1—’0, ;77+2'"’0, ey ?c,,—*()
Therefore, the original states { x,,xs,...,x,} are
approximated as linear combinations of the states
{ %y, %,..., %, b
x = P, x, (12)

where

x= {x,%0,....%,)"

;y= { ;1, ;z,..., },}T

P, is obtained by deleting the last (n-r) columns of P.
Suppose that we want to estimate the r states

X, 1SH<n, k=1,...,7
By selecting { 1,79, ..

Xy Xy on
.,7,} rows from P, the trans-
formation matrix P, between x, and x. is obtained. In
summary, P, is obtained from P by choosing the first

through 7" columns and { 7y, js, ..., 7,} rOws.
%, = P, x, 13)
The reduced model in the orignal coordinates is
x, = A,x,, Byu (14)
v, = Cux, (15)
where
A,=P, AP B=P, B, C= CP' (16)
We call the reduced model (A, B, C) the state

retaining reduced model since the state variable x.
approximates the r states of x and the output y- appro-

ximates y.
The reduction error of (A, B, () is defined as

follows[9]:
J = llg-gls= {trace( QR)}* 17

where g and gr are the impulse responses of the original
system and the reduced model and where @ and R are
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obtained by considering the augmented system.
AP+QA+ BB'=0 (18)
R=2C'T 19)

where
A B
2{=(0 12,)’73:(3,)'@:” -C) (20)
The normalized error is defined by dividing the reduction
error by 2 norm of the system impulse response as
follows:
lg—g %
L= g, = trgfeieé?c%)% @V

Proposition 1 The reduction error of the state
retaining reduced model (A, B, () is the same as that
of the balanced reduced model ( A,, B,, C,).

Proof : The impulse response of the state retaining
reduced model is equal to that of ( A,, B,, C,)
because the impulse response 1is invariant under
coordinate transformation. This proves the theorem. W
Although the state retaining reduced model is not
balanced, its error is the same as that of ( A,, B,, C,)
Moreover, state retaining reduced model has better
property that its states approximate the r states of the
original system.

Definition 1 : The state reduction error is defined as
the impulse response difference norm between a state of
the reduced model and the corresponding state of the
original system.

The above definition implies that the state in the
reduced model which has a smaller state reduction error
approximates the corresponding state in the given system
better than the one with a larger state reduction error
does. It is recommended, therefore, that the reduced
model should consist of the states with smaller state
reduction errors. In this paper, the state reduction error
is obtained from (17) and (20) by substituting 1 and -1
into the corresponding states of C. If fh state of the
reduced model approximate i state of the original
system, the state reduction error is calculated by
considering € whose i and (n+/)" elements are 1 and
-1, respectively, and the other elements are 0's.

Proposition 2 : The state reduction error of the state
retaining reduced model is independent of the selection of
the retained states as long as the order of the reduced
model is fixed.

Proof : See Appendix

With the proof of proposition 2, the algorithms to get
each state reduction error and the state retaining reduced
model are summarized as follows:

@ Obtain the balancing transformation matrix and

Hankel singular values.

@ Decide the order of the reduced model and obtain Pn-

by choosing the r columns of P.
® Obtain the balanced reduced model ( A4,, B,, C,).

@ Calculate Q; and @y from (A8) and (A.11).

® Obtain each state reduction error from (A.15) by
selecting a row vector from Pp,.
® Choose r states to be retained.
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(@ Obtain P- by choosing the r rows of P, and obtain

(A4, B, ).

Since the reduction error does not depend on the
coordinate transformation, it is independent of the choice
of the retained states of the state retaining reduced
model as long as the order of the reduced model is fixed.
For monitoring and decision making process, it is
desirable for reduced model to retain the states that have
less state reduction errors.

To obtain each state reduction error involves a
solution of the Lyapunov equation given in (18).
Therefore, to get all the state reduction errors of very
large order system needs enormous calculations. In the
algorithms, the state reduction errors are obtained in a
closed form as shown in (A.15), thereby saving lots of
computing time. That is to say, all state reduction errors
are obtained by substituting a suitable row vector P, to
(A.15) without deriving the state retaining reduced model
once the order of the reduced model is decided.

Example : Consider the 6th order system[10] described
by the following equations:

—0.2105 —0.1056 —0.0007 0 —0.0706 0
1 —0.0354 —0.0001 0 —0.0004 0
;= 0 0 0 1 0 0,
0 0 —605.1 —4.92 0 0
0 0 0 0 0 1
0 0 0 0 —3906.3 —12.5
—7.211
~0.0523
0
| orea7 ®
0
—448.5
_ (1 0 0.0003 0 —0.0077 0
Y (o 1 00 0 0) *

By transforming these equations into balanced coordi-
nates, Hankel singular values are obtained as follows:

o = { 639398 336618 0.0024 0.0020 0.0010 0.0009 }
By inspecting Hankel singular values, the second order
reduced model is selected to describe the given system
equation. The reduced model in the balanced coordinates
is as follows:

o R )R - ()
v =(2550% om0

Before this second order reduced model is represented in
the subset of the original coordinates, the normalized
state reduction errors are calculated as follows:
Jsn = 10.00016 0.00001 0.99601 1.0000 0.99843 1.0000}

By looking at the errors, it is natural for reduced model
to retain 1st and 2nd states of the given system. The
reduced model, which retains states 1 and 2 of the given
system, is obtained as follows:

A= (it o =+ (o)
y =(0.9999 0.0000) ,
r 0.0000 1.0000/ ©"

This reduced model has the same reduction error as the
reduced model in the balanced coordinates. The merit of

this reduced model is that its states approximate the
states of the given system. When the impulse are given
as an input, the state histories of the given system and
reduced model are shown on Figs. 1 and 2. Since the
state reduction errors of state 1 and 2 are very small,
two curves seem to be identical on both figures.

2 S
/ ™~
™~
Or / \\_‘_“’”
2 /
B2/
@ /
af /
6} /
% 5 10 15 20
time(sec)
Fig. 1. Time history of state 1 (——, reduced model;
------ , full order model).
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Fig. 2. Time history of state 2 (——, reduced model;
------ , full order model).

III. Low order controller
In this section, the reduction scheme derived in the
previous section is applied to get low order controller.
Linear Quadratic Gaussian theory is briefly reviewed by
considering a linear time-invariant stable system of state
x, output ¥ and measurement =z,

x=Ax+ Bu+ Dw (22)
y=Cx (23
z=Mx+v (24)

where w and v are white Gaussian noise with zero mean
and covariance matrices W and V, respectively. The
noise is assumed to be stationary having the following
properties:

ElwdDwT(D] = W&(t—2 (25)
Elv(doT(D] = V-0 (26)
Elw(d o™ (D] = 0 2n

Define the quadratic performance index as
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J=EL[(yey+ u"Ruwa] @8)

where @ and R are positive definite weighting matrices.
The problem to find the particular admissible control
to minimize the performance index 1is called Linear
Quadratic Gaussian (LQG) problem. The minimization
results in the optimal control vector u [111[12] given by

u=G1 (29)
where the controller gain G is expressed as
G = - R'B'K (30)

with K satisfying the steady state algebraic Riccati
equation

KA + A'K - KBR'B'K + ("QC = 0 (31
The estimated states are obtained from

=A%+ F(z—MZ%)+Bu (32)
where the estimator gain F is shown as
F = PM'V! (33)
with P satisfying
AP + PA" + DWD" - PM'V'MP = 0 (34)
By substituting (8) into (11),
i=HZz +Fz (35)
where
H=A-FM + BG (36)

LQG controller is divided into two parts, the estimator
and the controller. (35) and (29) imply that the measure-
ment acts as the input of estimator and that controller
output acts as the input of the plant. All states are well
estimated in the optimal sense and the controller output
is obtained from the controller gain multiplied by
estimated states that approximate the real state of the
plant.

In order to get the low order controller, the order of
LQG controller given by (35) and (29) is to be reduced.
There are some methods to get low order controllers[13].
A common thing of these methods is that the states of
the low order controllers do not approximate those of the
plant. Among some controller reduction methods, BCRA
(Balanced controller reduction algorithms, [5]) is chosen
to apply the state retaining algorithms given in the
previous section. The algorithms, however, can be applied
to other controller reduction methods based on balancing
reduction. BCRA transforms the system (H, F, ) into
balanced coordinates and truncates the least controllable
and observable states. By following the algonthms used
in the previous section, the state reduction errors are
obtained. The low order controller is derived by choosing

the retaining states and transforming the balanced
reduced model into the state retaining model as follows:

%, =H, %, +F,z 37

u, =G, x, (38)

The combined equations are derived by substituting (24)
into (37) and by substituting (38) into (22).

(A w)E) @) @
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Example : The example considered is a 20-member
truss structure. Fig. 3 shows the geometry and
dimensions of the structure. The objective of this
example is to show how the low order controller works
to suppress the vibration of the structure. Three
actuators are located on trusses 1-2 2-6 and 6-7. The
planar truss actuators are used because they give global
truss motions and do not require the added mass
necessary for the operation of inertia~type actuators.
Two displacement sensors are located on nodes 3 and 5
to measure x displacement.

150ft
517 T}10
4 9
3 8 800ft
2 7
y
1 6 ¥
x &

Fig. 3. Geometry and dimensions of a truss.

The discretized equations of motion for a flexible
structure are usually written as

Ma+Ca+Ka=L (40)

where M, C and K are mass, damping, and stiffness

matrices, respectively; L is the load vector; and q is the

structural response vector. This equation can be reduced

to a general first order form by defining the augmented

vector xT=( éT aT) as
x=Ax+f (41)
with
_{~-M'C -M'L _{-M1'L
A-(THC TN = (TN E) @

Considering the control problem, we limit ourselves to a
linear control so that f is given as

f=Bu+Dw (43)
where u is a control vector; w is a vector of white noise
in the control commands which is assumed to be a zero
mean Gaussian stationary process; B and D are deter-
mined from the locations of the controllers and influence
of the noise to the state variables. (41) and (43) yield
(22) where output and measurements equations are given
(23) and (24). with noise properties are given in (25),
(26) and (27).

The mass and stiffness matrices of the structure are
determined from structure analysis programs such as
ANSYS. The damping matrix, which is assumed to be
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proportional, can be calculated from the mass and
stiffness matrices when damping ratio is given[14]. In
this simulation, a small value of the damping ratio
(=0.005) is used. By changing the equations of motion
to state space form, we have a first order linear system
with 32 states, which are x and y displacements and
velocities of nodes 2, 3, 4, 5, 7, 8 9 and 10.

The controller is required to bring the system to the
vicinity of equilibrium. For simulation purposes, the
initial displacements from the static equivalent positions
of nodes 2, 3, 4, and 5 are set as (2, 0), (6, 0), (11, 0),
and (18, 0). Also, the initial conditions of nodes 7, 8, 9,
and 10 are the same as those of nodes 2, 3, 4 and 5,
respectively. Later, the process and measurement noise
are incorporated as random numbers with specified
statistical properties. Covariance matrices W and V in
(25) and (26) are assumed to be diagonal whose
diagonal elements are 10 and 0.05. Also, @ and R in
(28) are set to be diagonal matrices whose diagonal
elements are 12,000's and 1’s, respectively. In this
simulation, noise is generated by the random number
generator using the built~in function of Matlab.

Out of 32 system states, 16 states are retained in the
low order controller. The effect of this controller is
shown on Fig. 4 where solid and dotted lines are x
displacements of node 5 with and without controller,
respectively. It is shown that the controller brings the
truss to the equilibrium very quickly.

In order to know how well the state estimator of the
lower order controller approximates the states of the
plant, the states of the plant and those of the estimator
should be plotted. x displacement of node 4 is shown on
Fig. 5 where the solid and dotted curves are the states
of the low order controller and plant, respectively. By
comparing with a full order {LQG) controller, as shown
on Fig. 6, the low order controller works as good as
the full order controller. When the velocities of some
nodes are included in the retained states of the low
order controller, we can estimate not only the
displacements but also the velocities of the nodes. On
Fig. 7, x velocity of node 5 is shown, where solid and
dashed lines are states of low order controller and LQG
controller, respectively. As shown on the figure, the
estimated x velocity of the low order controller well
approximates that of LQG controller.

If BCRA[S] is applied to this example among some
existing low order controller algorithms, the states of
BCRA controller can not approximate any state of the
plant. By transforming BCRA controller into the state
retaining form, the state retaining reduced controller is
obtained. This controller can estimate some states of the
plant because its states approximate the corresponding
states of LQG controller and because the states of LQG
controller estimate plant states well in the optimal
sense. Since the reduction error is invariant under
coordinate transformation, the performances of BCRA
controller and the state retaining reduced controller are
the same except that the latter has a merit that each

state of the controller estimates the corresponding state
of the plant.

displacement(feet)

time(sec)

Fig. 4. X displacement of node 5 (——, with the low
order controller; -+ , without control).

displacement(feet)

time{sec)

Fig. 5. X displacement of the low order controller and
the plant for node 4 (—— low order
controller; <+ , plant).
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Fig. 6. X displacements of the low order controller
and LQG controller for node 4 (——, Ilow
order controller; --:+-- , LQG controller).
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Fig. 7. X velocity of the low order controller and

1QG controller for node 5 (——, low order
controller; -+ , LQG controller).

IV. Conclusions

The state retaining reduced model is analyzed. This
model has the same reduction error as the balanced
reduced model. Moreover, it has a merit that its states
approximate the original states, which is required in
many applications for monitoring, for tracking, or for
decision making process. The reduction error of the
reduced model is proved to be the same as that of the
state retaining reduced model.

State reduction errors are introduced. Each state
reduction error is proved to be invariant without
regarding to the selection of the other retaining states
when the order of the reduced model is fixed. The
algorithms to get each state reduction error are
presented. To obtain each state reduction error involves a
solution of the Lyapunov equation. To get all the state
reduction errors of very large order system, therefore,
enormous calculations are needed. In this paper, the state
reduction errors are obtained in a closed form, thereby
saving lots of computing time.

The existing controller reduction algorithms such as
BCRA do not estimate the states of the plant because
the coordinates of the states of the controller obtained
from balancing reduction are different from those of the
plant. By applying state retaining reduction algorithms to
the controller design, the states of the controller are
reconstructed so that the states of the controller can
approximate those of the plant.

Two examples are presented. One example shows that
state reduction errors are obtained without deriving
reduced model and that the states of the reduced model
with small state reduction errors well approximate the
states of the given system. As another example,
vibration suppression of a 20-member truss is considered.
A low order controller with 16 states is designed out of
the plant with 32 states. The simulation shows that the
low order controller works as good as the full order
controller and that its states estimate the corresponding
states of the plant.
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Appendix
Proof of proposition 2 : Suppose 7" order reduced
model (A, B, C,) is obtained from n” order system (A,
B, ) by reducing in the balanced coordinates and
transforming to the original system using Pr matrix.
When i state of the original system is approximated by

7" state of the reduced model, the state reduction error
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for state i is defined as: where

Js = ftrace( @ R)Y* (A1) Qn = P7'QuP T (A.12)

where non-zero elements of K are Since @ is calculated from balancing coordinates, it

R, D)= Rin+j n+) =1 (A.2)  does not depend on choice of retained states as long as

Rinti, ) = R, G, n+d) = -1 (A3) the order of the reduced model is fixed. Once Q@ is

The symmetric matrix @ is obtained by partitioning
(18) as follows:

AQu + QuA” + BBT = 0 (A4)
AQu + QA" + BB =0 (A5)
AQr + @Al + BB =0 (A6)
with
Q=( Qu le) (A7)
Qb Qn

Since ©u is the controllability grammian of the original
system, its elements are not affected by reduction.
Substituting (16) into (A5) and postmultiplying P, 7,
we get
AQn+ Qn A +BB=0 (AB)
where
axz = QIZPr_T (A9
Since @), is obtained from A, B, A, and B,, it does
not affected by the choice of retained states. Once @, is
known, @iz is obtained by postmultiplying transformation
matrix P,
Qi = blzprr
= { QuP1’ QuP2 ..
where P, is /" row of P
Premultiplying (A6) by P, postmultiplying by P,
and considering (16),

A, O+ QA"+ B, B =0

QuP-" ) (A.10)

(A1D)

3349
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known, &»; is obtained from the following equation.
@2 =P, QuP! (A13)

Considering the structure of matrix R,, nonzero

columns of @R, are i and (n+j)® columns, which are
equal except the sign is reversed. Since the trace of a

matrix is the sum of diagonal elements, which are (i, i)
and (n+j, n+j) elements for @R, Therefore,

Js = { trace( QR,) }*

{QG, ) - QG nv) - Qn+j, i) + Qntj, n+p))?
{ Quli, D - 2Quli, j) + @G, /) }*

{ Quli, i) - 2 QuP%+ P, QnPL}" (A.14)
where Qp is i row of Qp, @Qul, i) is " diagonal
element of tlle controllability grammian of the given
system, and @, is a matrix which is obtained from
(A.11). Since @ is the controllability grammians of the
truncated balanced system, it is a diagonal matrix. Q.
is obtained from (A.8). Since Py is jth row of P, which
is a sub-matrix of Pu, Py is i row of P, that is to
say,

Js =L Oul, 1) - 2 QuPri+ Py QnPry Y
where Py is i row of Pa.

(A.15) says that all terms of Js do not depend on the
selection of the state but on the order of the reduced
model. This proves the theorem that the state reduction
error of a reduced model depends on the order of the
reduced model not on the choice of the other states
retained in the reduced model. [ ]

t

(A.15)



