An efficient iterative improvement technique for VLSI circuit partitioning using hybrid bucket structures

하이브리드 버켓을 이용한 대규모 집적회로에서의 효율적인 분할 개선 방법

  • Published : 1998.03.01

Abstract

In this paper, we present a fast and efficient Iterative Improvement Partitioning(IIP) technique for VLSI circuits and hybrid bucket structures on its implementation. The IIP algorithms are very widely used in VLSI circuit partition due to their time efficiency. As the performance of these algorithms depends on choices of moving cell, various methods have been proposed. Specially, Cluster-Removal algorithm by S. Dutt significantly improved partition quality. We indicate the weakness of previous algorithms wjere they used a uniform method for choice of cells during for choice of cells during the improvement. To solve the problem, we propose a new IIP technique that selects the method for choice of cells according to the improvement status and present hybrid bucket structures for easy implementation. The time complexity of proposed algorithm is the same with FM method and the experimental results on ACM/SIGDA benchmark circuits show improvment up to 33-44%, 45%-50% and 10-12% in cutsize over FM, LA-3 and CLIP respectively. Also with less CUP tiem, it outperforms Paraboli and MELO represented constructive-partition methods by about 12% and 24%, respectively.

Keywords