SR 2R A S ek MARhelEe AQHETh 293N Y ArgRAY 2Rl o
Hef iz VIRl gz mEa Assh $218 Hge
doleh, ¥ pgel Ml Hpae] su At el Fukst Ay

}
Ol + o 1 bl olAAITREAE O o] 85F <arg]se #eksitl o

H = 714 n'is e watke] yES3Y 2L
g gt b dass el © o +,H1| Wag Eohehs (LEex #Wslde]) 2dANR LI P34 T
7Lk ulE]

An Algorithm Solving the Biconnected-components
Reconstruction Problem

Chang-Suk Lee' - Jung-Ho Park'" - Yeon-Seol Koo'

ABSTRACT

This paper considers the Biconnccted components Reconstruction Problem(BRP), that is, the problem to reconstruct
the Biconnected: components in response to tepology change of the network. This paper proposes a distributed algorithm
that solves the BRP after several processors and links are added and deleted. Its message complexity and its ideal-time
complexity arc O(n’+a+b) and O(n') respectively, where n' is the number of processors in the network after the
topology c¢hange. @ is the number of added links, and b is the total number of links in the biconnected components (of
the network hefore the topology change) including the deleted links.

LM E

This paper considers distributed algorithms opera-
ting on a network of processors connected by com-—
munication links. On such a network, it is important

to compute the biconnected components since the

A AL A sk ek sty HH AR ol A

JArue 4w

SOyE AV B

ST T s

W28 202, AR | 1907 59 %9

biconnected compenents are relevant to reliability of
the network. Several distributed algorithms for com-
puting the biconnected components have been propo-
sed[5, 6, 7, 9I. These previous works consider the
problem for computing the biconnected components
from scratch. In a real network, however, topology
of a network often changes because of addition(e.g.
recoveries) and deletion(e.g. failures) of processors
and links. This makes it important to study distri-
buted algorithms for Reconstruction problems, that is

the problems to reconstruct solutions(e.g. the bicon-

nected components) in response 1o the lopology cha-
nge. bome distributed algorithms for the reconst-
ruction problem have been proposed(8).

This paper considers the Biconnected-components
Reconstruction Problern{ BRP), that is, the problem to
reconstruct the biconnected components in response
to topolegy change. It is obvious that the BRP can
be solved by the known distributed algorithms that
compute the biconnected components from scratch.
However. it is a natural assumption that each proc-
essor knows the old solution, that is, each processor
imtially knows the bicunnected components of the
old network(ie. the network before the topology
change). The information available at each processor
15 not necessanly restricted to the old solution. More
generally, we can assume that each processor has
some auxiliary inforrmation about the old network.
This raises a question © How efficiently can the
BRP be solved using such an auxiliary information ?
This is an interesting subject of study.

This paper proposes a distributed algorithm for
the BRP after addition and deletion of several pro-
cessors and links. The solution of the BRP is the
labels assigned to all links © each link is labeled so
that the links with the same label form a bicon-
nected component, and each processor has to know
the label assigned to each of its incident links. Since
the algorithm uses a spanning tree of the old net-
work as auxiliary information, it alse reconstructs
the spanning tree in response to the topology chan -
ge. Its message complexity and its ideal time comp
fexity are Oln’ + @ + b)) and On’) respectively,
where n' 1s the number of processors in the new
network(ie. the network after the topology changer,
@ 1s the number of added links, and b is the total
number of links in the biconnected components{of
the old network) including the deleted links. Since
the length of every message is Oog n’), its bit
complexity 1s Oltn’ + a + bllog n'). The (wotal)
space complexity Is Helog n + e'log r’), where
nlresp, €) is the number of processors(resp. links) in
the old netwark, and ¢’ is the number of links in the

AR TIINTT AT
R A B BT P

new network., Note that we asswne wopology change
does not occur during the execution of the algorithn

Swaminathan and Goldmanl8] present a distri-
buted algorithm for the BRI in a different environ-
ment. Thev consider a completelv connected network,
that is, each processor can directly communicate
with any other processer by sending and receiving
messages. They consider a logical structure of the
processors on the completely connected network.
The logical structure changes due to addition and
deletion of logical links between processors, and the
BRP they considered is a problem to maintain the
biconnected components of the logical structure.
Since the network is completely connected, their
algorithm allows the processors to communicate with
any other processors directly regardiess of the
wpology of the logical structure. This assumption
makes it possible to deal with topology change
during the execution of the algorithm. Its message
complexity and ideal time complexity are respec-
tively Olc + m'} and Om'} for deletion of one link,
and respectively Ofc’ + m’) and O{m’) for addition
of one link, where clresp. ¢') is the number of the
processors in the biconnected component containing
the deleted link(resp. the added link), and m’ is the
number of the biconnected components in the new
network. In the case of addition and deletion of &
links, the message compiexity and the ideal time
complexity become & times as large as those for one
link. In their definition, the solution of the BRP is
the sets of processor IDs © each of the sets consisls
of the IDs of the processors contained in the same
hiconnected component, and each processor compuies
the [0 sets for all biconneeted components contain
ing it. This requires the high bit complexity and the
high space complexity.

2. Preliminaries
2.1 Graphs

An (undirected) graph G is a pair (V, E), where
V 18 a finite set of vertices and E is a st of

eedgestio, upnordered pairs of distinet vertices in V.
We use standard definitions [3] for a neighbor, a
path. a cvele, o connected graph, a spanning tree,
ote. This paper considers ondy connected graphs.

A hiconnected compenent 1z a maximal set of
cdges such that any twe edges in the sel e on a
commaon cvele. Notice thal each edge is contained In

exactly one hiconnected component.

2.2 Distributed system model

A network N s a pair (I, L), where P ts a finite
set of processors and 1. 1s a set of (communication)
links (e, unordered pairs of distinet processors in
Pl Trom the definition, we can consider a network
as a graph, and thus we use graph terminologies
and notations for networks.

Gur model 1s standard one, that js, (AT} through

(A4) are assumed. (See {5, 111 for more details).

(ALY All processors execute the same program.
The program consistz of (2) internal operations wit
hin a processor. (b} send operations to send messa-
ges to its neighbors. and (¢) recclve operations to

receive messages from its neighbors.

{A2) Everv link is a bidirectional link and the
processors can communicate directly with its neigh-
hors by sending and recetving messages along the

links.

{A3) Every link is completcly fault-free and works

as a FIFO queue.

(A4 The network is completely asynchronous,
that is, there is no bound on message delay, clock
drift, er the time necessary to execute a step, Thus,

there 1s no timing assumption,

2.3 Biconnected-component Reconstruction Problem
{BRP)
A network configuration is a giobal state of the

entire nctwork, We simply call it a configuration.

We say that the biconnected components of a
network N are already determined in a configuration
¢, if every biconnected component is uniquely labeled
and every processor knows, for each incident link.
the label of the biconnected component containing
the link. Recall that every link is contained in
exactly one hiconnected component.

The Biconnected-component Reconstruction Problem
(BRP) is the problem to recompute the biconnected-
components after change of the network topology.
We consider topology change due to addition and
deletion of several processors and links. Throughout
this paper, the network before the topology change
{resp. after the topology change) is called an old
networkiresp, a new network) and denoted by N=(P,
L) (resp. N'=(P', L")}

More precisely, the BRP is the problem to reach
the following final configuration from the following
initial configuration.

¢ The mnitial configuration : the biconnected com-
ponents of the old network N are already deter-
mined, and processors incident to the added or
deleted links know which incident links are added or
deleted.

& The final configuration : the biconnected comp-
onents of the new network N’ are already deter-

mined.

In order to solve the BRP efficiently, we can
make use of some auxiliary informaticn. If we use
some auxiliary mformation, the auxiliary information
must be also updated so as to correspond to the
new network N'. The algorithm proposed in this
paper makes use of a spanning tree of N, and also
recomputes a spanning tree of N'. Notice that links
of the spanning free of N may be deleted in the
topology change.

Throughout this paper, we use the following no-

tations.

¢ N-(P, Liithe old nctworkibelore wpology
change).

e 1. By - Ba ' the hiconnected components of
N.m ois the number of the biconnected components
in N

& [:a spanning tree of N available at the imitial
configuration. For convenience, we consider a span-
ning tree as a set of links.

¢ T, 1, Te: T = T &1 B for each i(15i<
m). Notice that T} is a spanning tree of N =(P, By
where P = {ue P (uy) & Bl

s N° = (P, L) the new network (after wpo
logy change).

* B3, By,

of N m' is the number of the biconnected com-

. Ba' o the biconnected compeonents

ponents i N

o Puresp. Pyl ithe set of the added proce
ssorsresp. defeted processors). It holds thar P, I”
Pa=@and PP =P U, DPa

s Liresp. Lo i the set of the added links(resp.
deleted links). It holds that 1. 11 Ly = @ and I.” - L
U Ls - Le

In this paper. the BRP is considered under the
following assumptions.

(A5) Both the old and the new networks are

connected networks.

(A6) The topology change does not oceur during

execution of a distributed algorithm.

{A7) “There exists exaclly one imtlator (e the
processor spomtancoudy) starts execution of a dist-
ribuied algorithm). Each of other processors starts

the algonthm on reccipt of a message.
24 Measures of efficiency
In this paper. we use the following efficiency

measures of a distributed algorithm.

® Message complexity @ The (worst case) mess-

SR TH A T A e A
N N B

T

1S
A
i
-

al

age compleaily I» Hw maximwm total number of
prRssaEes Uansiiited Quring any execulion of the

algorithm.

e Dt complexity @ The (worst case) bit comple-
xity is the maximum total number of bits trans-

mitted during any cxecution of the algonthm.

¢ ldeal time complexity @ The (worst case) ideal
time complexity is the maximum namber of time
anils from start to the compledon of the algorithm.
In estimation of the ideal tme complexity, we
assume that the propagation delay of every link is
at most one tme unif. Notice that this assumption
is used onlv for purpose of evaluation of the ideal
tirme complexity.

& Space complexity @ The (worst case) space co-
mplexity 1s the maximum total amount of storage of

all processors in the whole network,

3. Algorithm for BRP

In this scction. we present an algorithm for upda-

ting the biconnected components after topology change.

3.1 Properties of the biconnected components

Park et al. [7] proposed a distributed algorithm
for computing the biconnected-components. By apply-
ing the algorithm to the new network N', we can
sotve the BRP with the message complexity Oe’}
and the ideal time complexity O(n'), where n'(resp.
e’V iz the number of processors(resp. links) in N
The algorithm is based on a distributed depth first
search algorithm in [6]. The depth first search
algorithm checks all links in the network, and this
requires the message complexity 10 be Qle').

In the BRP, however, the following lemma obvi-

ously holds. The lemma implies that it is is not

necessary to check all links in the network, and that

there is possibility of reducing the message comple

=1ty of the BRI
Lemma 1 If there ix no deleted link in a bicon-
nected component B ool the old network, B is includ-

ol ina bieonnected component of the new network.

In what follows, for a biconnected component 13
of the old network, we call it an injured biconnected
component il 1l contains a deleled link(ie. B N Ly
), and call it an uninjured biconnected compen
ent if it contains no deleted link(e. B 0 Lg = ¢

If follows from Lemma 1 that it is not necessary
to check the biconnectivity of the links in an uni-
mjured hiconnected component. However, the links
amy be included in a larger biconnected component
of the new network, and we have to check the
uninjured hiconnected component t¢ some extent.
The following lemma implies that we have only to
check the finks of a spanning tree of the uninjured
biconnected component,

lemma 2 et N - (P, L) be a network defined
as follows :
L"=U A U L. - La where A = TYif BiNLy =

Iigm

$), and A = Bi(if BiNLy *+).

Let uleP’) be an arbitrary processor, and L'(u)
be the set of all links incident to u in N'(i.e. L'(w)
= {uvel.'] veP'}). Let R, he the minimum equival-
ence relation on the link set L'{(u) that satifies the
following three conditions :

{a) If both f and g(where {f, g)SL'(W)NL) are
links of the same uninjured biconnected com-
ponent of the old network N, then fR.g holds.

(b) If both [and g(where {f, gL (WNL"} are
links of the same biconnected component of
N, then fR.g holds.

{c) If both of fH.,g and gRuJ hold, then fRuh
holds.

Then, for any links of f and g in L'(u), f and g

are limks of the same biconnected component of N’
if and only if fH.g holds,

{proof) > If part © If links [and g are those of
the same uninjured biconnected component, it
follows from Lemma 1 that f and g are links of the
same biconnected component of N’. It is also clear
that f and g are links of the same biconnected
component of N, if { and g are links of the same
biconnected component of N°. Therefore, { and g are
links of the same biconnected component of N’ if
fR.g holds.

& Only if part © We prove the only if part by
induction. For the induction, we define a network
N = (P, L") for each j0<j<m) as follows

LY = U A/UL-Ly,
1€14m
where A’ = T. (if BiNLe = ¢ and i<7), and A/
=B; (if BiNLy * ¢ or i)

From the definiion, N* = N’ holds. We can
construct N™ from N7 by replacing B; with Ty if
B; is an uninjured biconnected component. It holds
NY = NY' if B is an injured biconnected
cornponent. It is clear that N™ = N,

We also define an equivalence relation R/ on
L'(w) by the similar way to the definition of R..
The only difference is the condition (b} in the
definition © we consider the biconnected components
of N" instead of those of N,

By the induction on j{0<j<m), we can prove
that fRujg holds if f and g are links of the same
biconnected component of N,

(O Inductive basis :For j = 0, it follows from N*
= N' that fR.’g holds if f and g are links of the
same biconnected component of N'.

(O Inductive assumption : Assume that {R,"g holds
if f and g are links of the same biconnected com-
ponent of N’

U Inductive step:It is sufficient to show the

claimt : f£,"'g holds if fR;g holds. If N7 = N
it is clear that the claim holds. In the followings, we
prove the claim for the case of N™'' & N by
contradiction.

If the claim does not hold, we can show that there
exist links f = (uv) and g = (uw) in N such
that f and g arc links of a commen eycle of N
hut fR.'g does not hold. Consider the simple v-w
path p obtained from the cycle by removing f and

g. Since N1

is obtained from N* by replacing
Byt with Tw: and the path p does not exist in
N*7 b contains a link in By -

the links in Bkt - Tkq with the paths in Tk and

Ty1. By replacing

removing cycles if created, we can obtain a simple
v-w path p’ in N"*'UIf the path p’ does not con-
tain u, [and g are links of a common cvele n N
and fR,"'g holds. Tt is a contradiction. If the path
p’ contains u, we can show that there exist links f'
= (uv')and g’ = (uw") mn Ty such that f = or
f and f are links of a common cvele in N™*'! and

such that g = g’ or g and g are links of a com-

(c) the netwerk N defined in Lemma 2

mon cvele in N°'. In any case, R, 1, 1"1£.,k"]g’,
and g’h’ui‘ ;g hold, and thus t}'{uk‘fg hotds, It 15 a
contradiction.ll

Lemma 2 considers the biconnectivity relation
only on the links incident th a common processor u.
However, since the links of the same biconnected
component form a connected subnetwork, the above
local biconnectivity relation uniquely defines the

hiconnected components of the entire network.

Example Figure 1(a) shows an old network N
and its biconnected cormponents. The links with the
same number form a biconnected component of N.
Figure 1{b) shows a new network N’ after the
topology change @ one processor and three links are
added, and one processor and three links are added,
and one processor and three links are deleted
Figure 1{c) shows the network N° defined in
LemmaZ, and its hbiconnected components, Figure
itd) shows the biconnected components of N’

{d) the biconnected components of N’

(Fig. 1) Network N*

Ry NI R TEERE

Remuwk thal we canr olain the hiconneeted compe
nent= of N' from those of N and N by f{oliowing

Lemmea?.

3.2 Qutling of the algorithm
The algorithm proposed 1 this paper uatilizes
Lemma 2 o solve the BRPD Thaso the algorithm

consists of the following three phases.

Pl Construction of the network N° as defined in
Lemma 2 0 every processor in the new network N/

determines which incident links are those of N,

P2 Computation of the biconnected components of
N" © every pracessor assigns a label to each of its
incident links in N so that the links with the same

label form a biconnccted component of N

P3 Computation of the biconnected components of
the new network N © Based on Lemma 2, every
processor assigns s label to each of its incident
links in N’ so that the links with the same label

form a biconnected component of N'.

3.3 Descrigtion of the algorithm
In this subscction, we present the algorithm for
the BRP.

331 The first phase

In the first phasc. the network N defined in
Lemma 2 1s constructed, that is, every processor in
the new network N' determines which incident links

arc those of N

To construct N efficiently, the algorithm perfor-
ms the depth-first scarch of N” during the cons-
truction of N'. When the initiator starts execution of
the algorithm or a processor is first visited by the
depth-first search, the processor (sav w) determines
the incident links of N as follows. After deter-
mining the incident links of N*, u makes the depth

first search proceed{ic. u sends the depth-first

search token to one of its neighbors),

o Tor each added link (uv), u determines that
fuv) is a link of N

® For cach link {uv) of the old network N, u
determines that (u,v) is a link of N, if {uv) is a
link an mjured biconnected component or (u,v} is u
tree link of the spanning tree T. If (uv) is a link of
an uninjured biconnected component and (u,v) is a
non—{ree link of T, u determines that {u,v) is not a
link of N".

For each link (uv) of the old network, a pro-
cessor u has to determine whether the biconnected
component (say Bi), contaming (u,v) is injured or
not. The processor u can determine it using the
spaming tree T; of By, (Recall T; = TNB). If there
exists a deleted link in By, T, may be partitioned
into some fragments. In any case, however, therc
exists a processor w in the fragment containing u
such that w is incident to a deleted link in B
Thus, by the broadcast-and-convergecast on the
fragment of 15, u can efficiently determine whether
Bi contains a deleted link or not. To avoid the
duplicate checks within the fragment, u broadcasts

the result to all processors in the fragment.

3.3.2 The second phase

In the second phase, the biconnected components
of N' are computed by applying our algorithm in [7]
to N". The algorithm in [7] is based on the depth-
first search of N, and it also constructs a rooted
spanning tree of N'. We utilize the spanning tree in
the third phase.

3.3.3 The three phase

In the third phase, the biconnected components of
the new network N' are computed. From Lemma 2,
each processor can locally determine which incident
links are contained in the same biconnected compon-
ent, In the BRP, howcver, we have to assign a co-
mmon label to afl links of the same biconnected

component.

To determine the label assigned to each link, we
use the rooted spanning tree T of N° constructed in
the second phase. Notice that the processors in the
same biconnected component of N appear consecuti-
vely in T7, that is, T'(8," is a spanning tree of By’
for each biconnected component By (1<i<m’) of the
new network N, Thus, for each B/(1£i<m’), we
can uniquely determine a processor w that is nearest
to the root among processors incident to a lnk of
Bi'. We call the processor u a representative of By,
The representative u determines the unique label of
B as follows.

In the third phase, the depth-first traverse of T
is executed, During the depih-first traverse, we ma-
intain the number t of labeled biconnected compon:
ents of N'. When a representative w first choose a
fink of Bi to make the depth-first traverse proceed,
U increments t by one and deternunes the label of
B to be the updated t. The processors incldent to a
link of B is nformed of the label in progress of the

depth-first traverse.

3.4 Complexilies

In the following theorem, nfresp. e} is the number
of processors(resp. links) in the old network, n'(resp.
¢) is the number of processors (resp. links) in the
new network, @ 1s the number of added links, and b
is the total number of links of N™ in the mnjured

biconnected components.

Theorem 1 The algonthm presented in this
section solves the BRI with the message complexity
of Oln’ + a + bi, the bit complexity O{(n" + «a
bilog n'y, the ideal ume complexny Oln') and the
space complexity Otelog n ¢+ e'log n').

(proof} The first and second phases can be
executed with the message complexity Oln® + g +
b} and the ideal time complexity O(n') using the
depth-first search algorithm in [6] and the biconnec
ted component algorithm in [7]. It is also clear that
both of the message complexity and the ideal time
complexity of the third phase are O(n"). Thus, the

message complexity and the ideal time complexity of
the whole algorthm s U’ v w = b and Q')
respectively.

Notce that the label assigned to g link does not
exceed the numher of processors. Thus, the length
of cach message 1s (log n'), and the bit complexity
is On" + a + b log n'). Since cach processor
maintaing the old label and the new label for cach
of its incident links, the space complexity is Olelog

ntelogn) IR

4. Conclusions

This paper proposed a distributed algorithm that
sofves the BRP after several processors and links
are added and deleted. Its message complexity and
its ideal-time complexity are Qin'+a+h) and Ola')

v

respectively, where n' is the number of processors
In the nctwork after the topology change, a is the
number of added links, and & is the total number of
links in the biconnected components (of the network
before the topology change) including the deleted

links.

References

[1] M. Ahuwja and Y. Zhu. An efficient distributed
alporithm for finding articulation pomts, bridges
and bicomnected components in asynchronous
networks. [n Proc. 9th Conference on Foundations
of Software Technology and Theoretical Comput~
er Science(LNCS 405). pp.99-108, 198G,

(2] EJ.HChang. Echo algorithms : depth parallel ope
rations on generd graphs. 1IEEE Trans, Software
Enginecering, 8(4) © pp.391-401, 1982,

f3] THCormen, C.ElLeiserson, and RI.Itvest. Intro-
duction to Algorithims, The MIT Press, 1990.

[4] W. Hohberg. How to find biconnected compon-
ents in distributed networks. Journal of Parallel
and Distributed Computing, 9(4) : pp.374-336, 1990,

[5] T. Kameda and M Yamashita. Distributed Algori-
thms.lin Japanese), Kindai- Kagaku-Sya, 1994,

165] KB akshmanan. N Aeenakshi, and K

man. A e optimal message efficient distributed

K. Thulasira

algorithm for depth first search. Information
Processing Letters, 20 ¢ pp103-109, 1987

{7) IPark. T.Masuzawa. KHagihara, and N.Tokura.
Efficient distributed alporithms solving problems
ahout the connectiviey of network.(in Japanese),
Journal of IEICEDD, J72-D-I5) © pp.343-356, 1989,

[8] 3. Swaminathan and K.J.Goldman. An incremen-
1l distributed algorithm for computing biconnect -
ed components. In Proc. 8th International Work-
shop on Distributed Algorithms(LNCS 857), pp.238

52, 15994,

19] G.Tel. Introduction to Distributed Algarithms, Ca-

mbridge University Press, 1984

o} & A

19781 A iastal Apgiet o
gugd &9

1981 A Fedjsta gty
EEEEEE

19910 xosty gistel QA
Aarete) dhald A £ 8

1981~ 1991 oA Al A st A AT R s
1992 - B FRUS AAANS REFE AN F

A Fo}: BAlg S, LZEY e

z
Al
fo

Z
r <
o
M
;a_
F

i ApEs

19800 ~ 1982 Ao a4
CEEEIE FECEE
oAb

19854 ~ 1987 HA @Ap/hdis
2 odetg AREd Ay

(FoHaa)
19873 ~19009 1A eAbzbgetw ojstel Juzetd

G Y
1996~ 8 A s34 R AT FFo014)
1991‘4~'&“ﬂ Iﬂ%‘iﬂﬂﬂ AR|EE Buy
A g T#HFE, ALEOFE

3o

1964 Ao ks

1975 7B dstd AAs
EEBLE!

1819 S ke BA%
(015442}

1988 AL UL st A4
A2 (o) 82

SUEAANLY, BEARAGY R

19799 o] F F

A =2 HFHAEg we
2 ARLEYEY, YT B

