A NOTE ON THE WEAK LAW OF LARGE NUMBERS FOR EXCHANGEABLE RANDOM VARIABLES

  • Hong, Dug-Hun (School of Mechanical and Automotive Engineering, Catholic University of Taegu-Hyosung) ;
  • Lee, Sung-Ho (Department of Statistics, Taegu University)
  • Published : 1998.04.01

Abstract

In this note, we study a weak law of large numbers for sequences of exchangeable random variables. As a special case, we have an extension of Kolmogorov's generalization of Khintchine's weak law of large numbers to i.i.d. random variables.

Keywords

References

  1. Real Analysis and Probability R. B. Ash
  2. Canadian J. Math. v.10 Central limit theorems for exchangeable processes S. Blum;H. Cheronoff;M. Rosenblatt;H. Teicher
  3. Probability Theory Y. S. Chow;H. Teicher
  4. Statist. Prob. Lett v.22 On the weak law of large numbers for arrays D. H. Hong;K. S. Oh
  5. Yokohama Math. J. v.40 An LIL for random walks with time stationary random distribution function D. H. Hong;J. S. Kwon
  6. Math. Ann v.102 Bemerkungen zu mciner Arbeit uber die summen zufalliger Grossaen A. N. Kolmogorov
  7. The Laws of Large Numbers P. Revesz
  8. Stoch. Anal. and Appl. v.5 On the law of large numbers for exchangeable random variables R. L. Taylor;T. C. Hu
  9. Limit Theorems for Sums of Exchangeable Random Variables R. L. Taylor;P. Z. Daffer;R. F. Patterson
  10. Internat. J. Math. Math. Sci. v.18 The law of the iterated logarithm for exchangeable random variables H. M. Zhang;R. L. Taylor