A GEOMETRIC REALIZATION OF (7/3)-RATIONAL KNOT

  • D.A.Derevnin (Department of Mathematics, Pusan National University) ;
  • Kim, Yang-Kok (Department of Mathematics, Dongeui University)
  • Published : 1998.04.01

Abstract

Let (p/q,n) denote the orbifold with its underlying space $S^3$ and a rational knot or link p/q as its singular set with a cyclic isotropy group of order n. In this paper we shall show the geometrical realization for the case (7/3,n) for all $n \geq 3$.

Keywords

References

  1. Lecture on Hyperbolic Geometry R. Benedetti;C. Petronio
  2. Graduate texts in Mathematics v.91 The Geometry of Discrete Groups A. F. Beardon
  3. de Gruyter Studies in Mathmatics v.5 Knots G. Burde;H. Zieschang;
  4. Revista Mat. Univ. Compl. Madrid v.1 Geometric orbifolds W. D. Dunbar
  5. de Gruyter Studies in Mathematics v.11 Elementary geometry in hyperbolic space W. Fenchel
  6. Comm. in Algebra v.23 Some homeyocmbs in hyperbolic 3-space H. Helling;A. C. Kim;J. L. Mennicke
  7. The Geometry and Topology of 3-manifolds W. Thurston