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DISCRETE PROOF OF EVEN KAKUTANI
EQUIVALENCE VIA o- AND B-EQUIVALENCE

KyYyEwoN KOH PARK

ABSTRACT. It has been known that if T and S are even Kakutani
equivalent, then there exists U such that T and U are a-equivalent
and S and U are B-equivalent where o and § are irrationally related.
In this paper we give a complete discrete proof of this theorem without
using R-actions.

1. Introduction

An orbit equivalence ¢ between two probability spaces (X, F, u) and
(Y, G, v) is defined to be invertible, measure preserving map which sends
the set of the orbit of a point z onto the set of the orbit of ¢(z). Dye’s
orbit equivalence is the most “unrestrictive” orbit equivalence in the
sence that ¢ does not keep any of the group structures of an orbit.
Isomorphism between two probability space is an orbit equivalence which
preserves the group structure of an orbit. Recently a general theory of
orbit equivalence, called restricted orbit equivalence has been developed
by D. Rudolph [Ru] and thereafter by many others [dJFR] [KR| [Pa2].
Dye’s orbit equivalence, Kakutani equivalence and isomorphism can be
recasted in the famework of restricted orbit equivalences [ORW]. More
recently the theory has been developed for general groups [KR].

Given an irrational «, even a-equivalence have been defined as fol-
lows [dJFR] [Pa2]. (X,F,u,T) and (Y,G,v, S) are a-equivalent if and
only if some flow under a function taking values 1 and 1 + « with base
(X, F,u,T) can be represented as a flow under a function taking values
1 and 1 + « with the base (Y,G,v,S). We assume that the two ceiling
functions have the same integrals over their respective bases. Notice that
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without the restrictions on the values of ceiling functions, this defines
even Kakutani equivalence between (X, F, p, T) and (Y,G,v,S). Hence
it is clear that even a-equivalence is a finer equivalence relation than even
Kakutani equivalence. We may remark that we can define a-equivalence
as we define Kakutani equivalence dropping the term “even” [Pa2].

We begin with our notations. Let dist(a, Z ) denote the distance from
a real number a to the set Z. We write T(xz,y) = n if and only if
y = T"z. We denote by (a) the fractional part of a real number a. We
denote the induced map of 7' on A by T4 and denote by F4 the o-algebra
F restricted to A. We can give the following equivalent definition for
a-equivalence [dJFR).

DEFINITION. We say (X, F,u,T) and (Y,G,v,S) are a-equivalent if
there exists.an orbit equivalence ¢ : (X, F, 1, T) = (Y, G, v, S) such that
given € > 0 and for all A of positive measure, there is a subset B CcA
such that

(i) ¢ is an isomorphism between Tz and SeB)-
(ii) For all ,y € B where y = Tz,

dist <T($ay) - S(¢($), ¢(y)) , Z\ < e
o J

We may mention that there is a definition of even a-equivalence for
continuous actions(flows)[Pal]. Notice that if ¢ satisfies the condition
(i), then ¢ is an even Kakutani equivalence. We require an additional
condition (ii) for a-equivalence.

It is proven in [dJFR] that a non-Loosely Bernoulli even Kakutani
equivalence class has uncountably many different a-equivalence classes.

2. Main Result

The following theorem discribes the relation between even Kakutani
equivalence and even a-equivalence [Pal]. Also we have the analogous
theorem for flows. The proof of the theorem in [Pal] hinges on the orig-
inal definition which is given in terms of flows. In this paper we present
a discrete and simpler proof of the theorem bypassing the flow construc-
tion. Although this method can not handle the proof of the theorem of
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continuous actions, it is hoped to be useful for proving analogous results
for more general groups like 2.

THEOREM 1. If (X, F,u,T) and (Y, G,v, S) are even Kakutani equiv-
alent, then there exists (Z,H,\,U) such that T and U are a-equivalent
and Y and U are [3-equivalent where o and [ are irrationals and irra-
tionally related.

Before we start the construction, we need the following facts.

LEMMA 2. Let m and n be sufficiently large numbers. Given € > 0,
there exists L(€) such that for some 0 < k < L(e),

(m:k) <€ and (%—]—g—) <€

where (a) denote the fractional part of a.

PROOF. Let 2o = () and yo = (5)- Since % and % are irrationally
related, the map R(%,%)(x, y) = (m+é,y+ %)(mod 1) is ergodic on a two
torus 72 = S* x S'. Hence there exists L(¢) such that {Réé7%)($o,y0) :
0 < i< L} is e-dense in 2. O

Notice that L(¢) can be chosen independent of m and n.

COROLLARY 3. Given any integer p and any m > n sufficiently large,
there exists q such that
L(e)

—_— <_—_
lp — q 3

(m—q><6 and (n—q)<6.
o «a

The construction of (Z,H,A,U) is through successive approximation
method. We will divide it into two parts.

2.1. First step

We let (X, F,u,T) and (Y,G,v, S) be even Kakutani equivalent. Let
¢ be an isomorphism between T4 and Sp. Let € = Y €; < nA be given.
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Given [ > 0, we denote by R4 a Rochlin tower of height { of (A, Fa,u,
T4) with an error set of measure less than . We use R4 to build a
skyscraper of (X, F, 1, T) as follows : If z € R4 and Ta(z) € Ry41 where
Ry, denote a level set of Ry for k = 0,1, ,1— 1, then there exists r(z)
such that Tx(z) = 77 (z). We add {Tx, T?z,- - , T =121 between
z and Ta(z). We do this for every point of Ry for k = 0,1,---,1 — 1.
This builds a skyscraper denoted by I" of (X, F,u,T). Let Rp = ¢(R4)
be a Rochlin tower of (B,Gp, Sg,v) of height I. We build a skyscraper,
denoted by I, of (Y, G, v, S) using Rp as we did for (X, F,u,T). Notice
that I'(and I") does not have a constant height. Also a point z in the
bottom level set of I" and its corresponding point #(z) in I' may not
have the same height.

We divide the skyscraper into columns so that each column has a
constant height. Moreover if  and z’ are in the same level of R4 in a
column, then r(z) = 7(z’) and r(¢(z)) = r(4(2’)). That is, if z snd 2’
are in the bottom level set of R4, then we have r(T(z)) = r(T% ("))
and r(T(¢(z))) = r(Th(¢(z'))) for all i = 0,1,--- ,1 — 1. I UZIT7 A
denotes a column of 'V, then we call by a subcolumn a set Ui;éT"B
where B C A. By taking a subset of A if necessarv, we may assume that
AnN(X-I'Y=Bn((y -I)=0.

There exists no(€1) such that the set £ = {z : |1 57 01 xa(Tz) —
pA|l < e, forall n > ng} has measure greater than 1 — ¢;. By the
standard argument, we may assume that the bottom level set of I is
contained in E. We may also assume that the bottom level set of I’
satisfies that

1 — .
I;; ZOXB(S"y) ~uB| < ¢

for all n > no. If z € E, then we say that x satisfies the ergodic theorem
within €; with respect to the set A.

Using the skyscrapers, we construct (Z1), H®' AU /(D) gatisfying
the following,.

(1.1) AW (ZM)y > 1 — 2.

(1.2) There exists a subset C1) ¢ Z() such that ¢ : Tyoonp — U(l()l)

1 . .
and ¥ : Sgoynp — Ué()l) are isomorphisms.
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T(Thz, Thz) — UD (p(Thz), (T : .
(Taz, (p(T42), #(T4)) < exfor allT (z)andT (z) € I'N A and
o

(1.3

[ ] (1) 1
(S Sy, Shy) - Bw(sBy) (5% y)>> < exfor allSh (y)andS%(y) € F 1B,
(1.

4 |r(p(z)) - iﬂflﬂﬂ% < 2L(ey) for all z € T N A.

We may assume that ( g < . It is easy to take a subset AM c A
such that for every z € A and y € ¢(AD)), r(z) and r(é(z)) >
L(e1)?. Without confusion, we assume that the set A satisfies the above
condition. Let h; denote the minimum of the heights of all columns of
I' and I'. We may assume that h; is large enough so that %—L% < 2
and h; > no(fl).

To construct (Z(, HD D UM we first build a new skyscraper
using a copy of the Rochlin tower R4. We denote the copy of R4 by
Reoy. We divide Ry by columns so that each column corresponds to
a column of R 4. Suppose z is in the first level set of a column of I” which
is contained in A. Let p; = T(x’TAEHS(Qd’(m)’dJ(TA(z))
3, we find ¢; such that

(14) |p1 = L{er) — q1] <
(1.ii) (LTM) <9 and (IS(rb(w)de(gTAﬂ:))“ql[) <y

. By our Corollary

L(C])

We add g;-many level sets of equal measure between the bottom level
set and the next level set of the column of RC<1).
If p; CN I)+S(sf>(x) P(Taz)) o0 ;7 — 2,1

that
(Liii) |py — L{ey) — qs] <

— 1, then we find ¢; such

14(61)
7 -

We add g;-many level sets of equal measure between the t" level set
and the (z + 1)*" level set of the column of R-. We repeat this between
level sets of each column of Re. We now have a skyscraper 'Y Notice
that ' is made up of columns each of which corresponds to a column
of D, We let Z(!) be the union of all level sets of I''1). We define U1
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on I'V in the obvious way except on the top level set of o, Every
point in a level set is mapped to the point directly above in the next
level set. The o-algebra and the measure on Z(1 are also defined in the
obvious way.

Now we look at the properties of (Z(1), #(D) X1 (1)) We compare
the measure of the first column of I" and the first column of F of the
skyscraper of Z(1), If we denote the first column of I'T and I’ by I3,
J1, and Hi, respectively, then it is easy to see from our construction of
I that

u([l) + I/(J1) B 2L(€1)
2 L(61)2

< /\(1)(K1) < f‘_(_{l)_;_’/(i)_

Since this holds for each column, we can say that

WD) D) gy < D)+ T)
2 2
l—€—€¢1 < )\(1)(2(1)) < 1.

It is also clear that Tanr, Sy~ and Ucynj are pairwise isomorphic.
We note that for every z € R4 except the top level set of each column,
we have

(7"(T2m, Thx) — U (T =), ga(lez))>

[0 4

<

(—T@,T;;x) + Tz, Thz) + UV (p(), (Th2)) — U (p(=), w(Tj;z>>

_ ( ~T(z, Tiz) + U (p(z), @(T:m)) . (m,Tz;z) — U (p(z), <P(Ti:r))>

(84 83
N(ETE T +al) | (T Th2) - g
(84 i 84
€1 €1
< — 4 — =
2 + 5 €1

Likewise, for every y € Rp except the top level set of each column,
we have

(s<sgy, Spy) — UM (e(Sp), () ) e
. .
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2.2, Induction step

We want to build (Z(), 1) A2 U(2)) satisfying

(2.1) AGN(Z@) > 1 — ¢,
A(ZW Nz > 1~ 2.

(2.2) There exist subsets A? ¢ AN = A, B®® ¢ BY) — B and
C® < ) such that go(z) L yonp — Ug(l and (2 : Speynp —
U((?()z) are isomorphisms, where pu(A?) = »(B®?) = \@(C?) >

(1 - e2)pu(AM).
(2.3) For any i and j, we have

( (T (), T2 () = UPp(Ti i, (), (L0 o)

2
_ (w)))l> <23 ¢
k=1
and

(18(51,@)(1/)), S (®) — U‘2)¢(5}§(2>(y)),w(sém(y)))I) :

(e

Recall that h; is chosen so that hzlL}(f(zA)) < %. We build a skyscraper

I'® of X and the corresponding skyscraper I'®) of Y as follows. First
we build a Rochlin tower RE(‘Q) of A and use this to build the skyscraper
I'® of X. We divide the skyscraper into columns so that each column
and its correponding column of I'? has a constant height. Also for every
z € Ain a level set of a column, we have T'(z, Taz) and S(¢z, ¢p(Tsz))
are constants. They may differ from a level set to a level set. We assume
that the minimum height of all columns, denoted by hy is large enough
to satisfying if(;ix) < 9. Note that each column of I'® consists of
columns of I" and level sets from the error set between the columns of
r.

Clearly T'| 412y and S|gn 2 are isomorphic. Let 72 denote a column
of I'® and J? denote the corresponding column of I'(2). Hence without
confusion, we may say that T'|s~;2 and S|p~j 2 are isomorphic. We
assume that each column of I'® and I'?) satisfies the ergodic theorem
within €z with respect to the set A and B respectively. We build the
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skyscraper r® using I'W and some more extra set. Suppose I? =
IBUF?UIZUE2UIZUEZU---U 1'l21 where each I? denotes a subcolumn

of ') and E? denotes the union of level sets from the error set between
I? and I}, ;. Note that the bottom level set of IZ is in A. We construct
a column K? corresponding to /2 which is made up of subcloumns of
I'D and some extra set as follows. N

We denote by K? the subcolumn of I'(V) corresponding to /2. For
each ¢, we add level sets, denoted by G;, between K? and K i2+1 so that
the number of level sets in K2 UG? is the average of the number of level
sets in I? U E? and the number of level sets in J2 U F?. Hence we have
the number of the level sets in K2 = (Ul K?)U (UL, G?) is the average
of the number of level sets in I? and the number of level sets in J2. We
construct a column corresponding to each column of I'2)., We denote
the new skyscraper by I"® whose column consists of concaternation of
subcolumns of ') and additional level sets between the subcolumns.
Note that

i @) 4 (@)
@) playy _ #UE) + v (I2)) &
AT 5 > 1 5

where A(2) denote the obvious measure on 1'(?). If necessary, we take a
subset Ao of A so that we may assume that there are more than 2L(e;)-
many level sets between the last level set in Ag of I? and the first level
set in Ag of I2, ;. Taking further subsets A®) B(?) and C® of A1) B
and CV) respectively, if necessary, we may assume that there are more
than 2L(e2)-many level sets between the last level set in B(?) of J? and
the first level set in B®) of J2,|. Also we assume that we still have the
property T'| snr2, Slp@nre and Ul k2 are isomorphic. The number
of level sets removed from A1) is at most L(ez) while the total number
of level sets in A of I? is at least h; - %4 for each i. By our choices of h;
and L, we have

2L(€2) . 2L(€2) < 4L(€2)

hl'%A_hl‘%A hl,uA

< €3,

Since this holds for every subcolumn I?, we have pA®?) > (1 —ey) A,
Since this also holds for the set B(?) and we require 1’| 42) be isomorphic
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to S|, we have uA® = uB@ > (1 — )uAW.

Now we start to construct '(?) using I'®). Let p? denote the height
of K} UG3. We let a? and b? denote the heights of I? U E? and J2U F2
respectively. We find ¢? such that

(2.) |p} — L(ez) — g?| < e2))

@i (50 < ana (M521) < 4
' 2 3 2

63

We remove (p? — ¢?)-many level sets from the top of Ff. 2. For each
successive I? and Il+1, we let by a? the height of Uiz (12 U EJ2) and by
b? the height of Ui (J2U F2)

Let p? denote the height of Uézl(K}2 U sz) where p? = if;—bi For
each 7, find ¢? such that

(2.iif) |p? — L(e) — ¢?| < X2),

(2.iv) (—‘—1—’02_q2l) < £ and (—l———leLq?') < 2
* @ 2 B 2
Note that p? — 2L(es) < ¢ < p?. We remove (p? — ¢2)-many level sets

from the top of F2. We repeat this for each column and denote the new

skyscraper by I'® and denote the union of all level sets of I'2) with the
measure structure and the transformation by (Z(2’,.7:(2), A3 U(2)).

We compute

) = A ()1 - 2

Hence we note that
A2z n Z®y > )\(2)(2(2)) — €.

Let z € A® be in the bottom level set of a column of T2, We have
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o

(|T<T b @) (@), T o () — U(Ug@)(m»,rfg<2><<p(x>)>|')

[0

(|(T< T 2 (@).2) + T(2, T ) (2))) — (U(UL (0 (w)),sv(w))+U(¢(w),Ué<2)(<P(-’B)))I)

o4

(I(T(T a2 (@),2) = U( é,u)(np(x)),so(w)))I)

. (|(T(x T ) () - U(w(w),Ué@)(cp(m))l)

o

for all 7% ,,(z) and 9 ,,(z) € '@ N A®,

If I? denote a subcolumn of ') that contains TA(Q)(x), then we
denote by iy the integer such that 7% A0< 5 () is in the bottom level set of
I?. Recall that the bottom level set of I'® is contained in A®). From

our construction of I'? we have

(I(T(T};(z)( z),x) = U(Uge (e(a ))W(@))I)

(o]

«

=<!T(Tl&2><> z) — U(U,, (e )),so(acml)

n (‘T(Tmu)( )’Tz(z)(l')) U(Ug)m)( (z)), ‘]ém( (5’3))”)

&

<€g + €.

Likewise we have

(IT( ) Am(w))-U(Gb(w),U&n(w(:v)))l)

«

< €2 + €.

Hence for any 7 and j,

(IT(T,im(w)),Tf;(z)(ﬂr)) = U(Uf ez (9(x)), ULeoy (0(2))))|

«

) < 2(62 + 61).
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This also holds between Sy and Upe). That is,

<|S( S (¥), Sy () — U ém(‘/’(y))’Ué(z)w(x)M) < 2(ez + €1).

8

We successively construct (Z(™, H(™ A" (™) with the following
property.
(n.1) A(ZMW) > 1 —¢,,

AR, Z0)y > 1 -3 e>1-32 e forallk=1,---,n

(n.2) There exist subsets A™ ¢ A=1 B « B(r-1) and ¢ ¢
C(™=1) guch that @ Thmy = Upmy and ¥ : Sgy — Ugn are
isomorphisms, where p(A™) = y(BM™) = AM(CM) > (1 -
D i € A).

(n.3) For any ¢ and j, we have

T(T% ) (2)), T2, (z)) — U™ (T ) n) -
(| (T A( y(z)) A(n)( ) . o( o (T x)), (T Al (z) ><226k

and

(15( e W) Sty (¥)) — U™H(SE 1y (1)), (S (1))

B | .
2 .

Let 7 = limy ;00 N2, Z(). We denote this final system by (Z, H, A, U).
It is easy to check that the system (Z,H,A,U) has the following prop-
erties.

(1) X(Z2)=1.

(2) There exist subsets A° = limy,_, 00 A™, B® == lim,_,o B™ and
C° = limp_y 00 C™ such that ¢ : Tho — Ugo and ¢ : Sgo — Uceo
are isomorphisms and pu(A°) = v(B°) = AM(C°) > (1 — ¢)uA.

(3) For any ¢ and j, we have

CH,M)J%@D~UW%WW»U&WMM)<%

(¢
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and

|S(S5e (1), S%o (1) = UUks (%(y)), U (¥ (1))

(o]

< 2e.

This completes our construction.
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