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GENUS DISTRIBUTIONS
FOR BOUQUETS OF DIPOLES

JIN HwaN Kin AND JAEUN LEE

ABSTRACT. We compute genus distributions for bouquets of dipoles
by using the method concerning the cycle structure of permutations
in the symmetric group. From this, we can deduce that every bou-
quet of dipoles is upper embeddable. We find a foriula for comput-
ing the embedding polynomials for bouquets of difoles.

1. Introduction

Let G be a finite connected graph with vertex set V(G) and edge
set E(G). It might have loops at a vertex and multiple edges between
two vertices. By regarding the vertices of G as 0-cells and the edges of
G as 1-cells, the graph G can be identified with & finite 1-dimensional
CW-complex in the Euclidean 3-space R®. We associate two oppositely
directed edges ¢* and e~ to each edge e of G, and denote by D(G) the
set of all directed edges of G. For each v € V(G). let N(v) denote the
set of all edges in D(G) starting at v and call it tte neighborhood of v.

A surface means a compact connected 2-manifold without boundary.
An embedding of a graph G into a surface S is a topological embedding
t: G — S. An embedding i : G — S of G into a surface S is called
a 2-cell embedding if every component of S — ¢(G), called a region, is
homeomorphic to an open disk. A region of an erbedding i : (¢ — § is
said to be k-sided if the length of the walk in G corresponding to the
boundary walk of the region is k.
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Two 2-cell embeddings i : G — S and j : G — S of G into an oriented
surface S are said to be equivalent if there is an orientation-preserving
homeomorphism 4 : S — S such that hoi = j.

Throughout this paper, we assume that every surface is oriented, all
embeddings of graphs into surfaces are 2-cell embeddings and the number
of embeddings of G into a surface S means the number of equivalence
classes of embeddings of ¢ into S.

A rotation system p for G is an assignment of a cycle permutation
p(v) on N(v) to each vertex v in (;. Notice that for a rotation system
p for G p(v) can be viewed as a permutation on the directed edge set
D(G) which fixes each element in D(G) — N(v).

It is known [4] that the equivalence classes of embeddings of G into
surfaces are in one to one correspondence with the rotation systems for
G. It implies that the total number of embeddings of G into surfaces is
equal to [T .y (IN(v)] — 1)!. Mcreover the number of regions of the
corresponding embedding to a rotation system p, denoted by r(G), p), is
equal to the number of the cycles in the representation of (Ieevicy p(v))B
as the product of disjoint cycles, where 3 is the full involution on D(G)
that takes each directed edge to its inverse (Theorem 2.1 in [4]). Given
a rotation system p for (-, we denote by g(G, p) the genus of the surface
in the embedding of G corresponding to p. Thus, by Euler’s equation,
2 —29(G,p) = |V(G)| - |E(G)| + 1(G, p). For each nonnegative integer
m, let g,(G) denote the number of embeddings of G into the surface
of genus m. The genus distribution of the graph G is defined to be
the sequence {go(G), 1(G), - ,gn(G),---}. It is clear that there are
only a finite number of nonzero terms in the sequence. The maximum
(minimum) value of m that g, (G is nonzero is called the mazimum
(minimum) genus of G, and is denoted vr(G) (v((3)).

Duke [1] showed that G has an embedding into the surface of genus
m, t.€., g,,((7) is nonzero if and only if v(G) < m <. y4(G). By Euler’s
equation, v(G) < |22, where 3(G) = |E(G)| — |V(G)] + 1, |X]
denotes the cardinality of a set X and |r] is the greatest integer less
than or equal to a real number r.

Xuong [9} proved that every connected graph ( satisfies the equation
Ym(G) = HB(G) - &(G)), where £(G) = min&,(G — T), the minimum
being taken over all spanning trees 7" of G, and £,(G — T') denotes the
number of components of the subgraph G — T of odd size. If v4(G) =

ld(( |, G is said to be upper embeddable.
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FIGURE 1. Bouquet of two 3-dipoles

There are several papers about graph embeddings that are concerned
with the determination of v(G) or s (G) for special graphs G (see [10]).
Furst et al. [2] have computed genus distributions for ladders and cob-
blestone paths. And then Gross et al. [4] have computed the genus
distributions for bouquets of circ.es and asked for the genus distribu-
tions for other interesting graphs. Kwak and Lee [7] and Rieper [8] have
computed the genus distributions for the dipoles independently.

Now, we introduce a polynomial related to regions of embeddings of
G. For each integer ; > 0, the exponent of variable z; Is the number
of j-sided regions in the embedding, and the sum of these monomials,
taken over all embeddings, is called the embedding polynomial of G,
which is denoted i[G](z;). Gross und Furst 3] observed that the genus
distributions can be calculated from the embedcing polynomials and
they studied the embedding polynomials for bar-amalgamations.

In this paper, we compute the genus distributions for bouquets of
dipoles by using the method concerning the cycle structure of permu-
tations in the symmetric group. Irom this, we can deduce that every
bouquet of dipoles is upper embeddable. We find : formula for comput-
ing the embedding polynomials for bouquets of dipoles.

2. Rotation systems for bouquets of dipoles

The p-dipole D, is the graph which consists of two vertices joined by

p edges. Let B, , be the graph defined as follows: The vertex set VI(B,,)
consists of .+ 1 vertices, say vy, vy, --- v, and for each 7= 1,2, n,
there are exactly p edges, say €i—Dpils * 5 €, between vy and v;. We

call it the bouquet of n p-dipoles. For convenience, lot e, * be the directed
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edge from v, to v, =y for each k == -« ,np. Then its inverse e, is
the directed edge from Uk to vy for eachk=1--- np.

Now, the following lemma comes from |V (B,,)| =n+1, |E(By,)| =
np and the discussions in section 1.

LEMMA 2.1. Let p be any rotation system for B,,. Then

(1) 9(Bups ) = 5 {mp—n+ 1~ 7(Buy )

(2) r(Byp, p) is equal to the number of cycles of the representation of
plvo)p(v) -+« p(v,) B as the product of disjoint cycles, where 3 =
(e1"er )(eam e27) -+ (enp' €ny7).

For each rotation system p for 5,,,, let
p(vo) = (er"er,” --ex,), p(v;) = (eG-nypr1 €1, - er,”)

and define p : V(B,,) — Spp by

p(UO) - (1 ky - knp)7 p(vx) = ((] - 1)P+ 1 lj'z T ljp)’

where 1 < j < n, {ky, k3, Kt = {2,3,--- ,nph, {lj, L, 10} =
{G-Dp+2,(j-1)p+3,---,jp} and S,, is the symmetric group on
{1,2,--- ,np}. Notice that for two rotation systems p and p' for B,,,
p=p iff p=p/. For convenience, we let p = p{vg)p(v1) - - p(vn) € Spp-

For each integer 1 < k < np, let j; : S,, — NU{0} be the map defined
by jx(7) is the number of k—cycles occurring in the representation of 7
€ Syp as the product of disjoint cycles.

LEMMA 2.2. For each rotation system p for B,

Bup, p ZJk ).

Proof. We observe that any cycle occurring in the representation of
p(vo)p(v1) -+ p(v,)B as the product of disjoint cycles is of the form
(eml+ (?mz“ 6m34 S e - emzl‘_)w

where 1 < my 1, mox < np and my, . = pF~(my) foreach k = 1,--- L.
Let A be the set of cycles in p(vg)p(vy) - - - p(v,) 5 and B the set of cycles
in 6. Now, we define a map ¥ : 2 -- ‘B by

U((m " €my €my ' Cmy, €my ) = (Mamg -+ mgy).

Then W is a well-defined bijection from 2 onto ‘8. Hence, by Lemma
2.1(2), we have the lemma. O
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3. The number of embeddings of bouquets of dipoles

For a nonnegative integer & and an element ¢ € S, with j,(¢) = n,
let
i jr
N 50C) =k, o) = 1} .

{1

[4\(’;)(71) = I(r € S

\

We note that ‘Fﬁ)(n) = }F:f’,{(n) for any (,(" € S,, with j,(¢) =n and

3,(¢') = n. We shall denote this number f¥'(n).
By contrast, for a nonnegative integer k and ar element o € S,, with
jnp(a) = 1, let

np

D o) =k, ,(¢) = }

1

E%\(n) = {c € Snp

We also note that ’Eipz(n)’ = IE‘(’{?A'(R)’ for any 0,0’ € S,, with j,,(0) =

1 and j,,(c’) = 1. We shall denote this number eiﬁ(n) according to
Jackson’s notation {6].

Notice that fép)(n) == 0 and eé” (n) = 0.

THEOREM 3.1. For each nonnegative integer 1n, the number of em-
beddings of B,., into the surface of genus m is

grn(]}n;p) = ((])—1 ‘ n};)) 2m— n+l(7l’)
= (=00 (= D) ().

Proof. By Lemmas 2.1, 2.2 and the above discussions, we have

gm(Bn,p> = I{/) € R ’ (13, p = np — 2m - n + 1}|
”,IL
= {p € R Z w(p) =np —2m —n+1 }
k.1

- |{(U; 7]1 t '7}n) = AS‘n’I) X Snp ‘ j"}'((r) = 1’77] (= Q:]’

np

Z); (o) =mp—2m —n + 1}'

- ((1) - 1)')” 7(11;) 2m- n+l(n)7
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where ‘R is the set of all rotation systems for B, and €; is the set of
cycle permutations on {(j — 1)p+ I,--- ,jp} foreach j = 1,--- n.
Now we consider the set:

A = {(U, C) € Snp x Snp

S R00) = by jupl0) = 1, i (C) — n} |

1=1

(np).

and the number of
nlpn

Since the number of ¢ € S, with j,(¢) = n is

0 € Syp with j,,(0) = 1is (np — 1)!

(np)! 4, ,
o 1m) = |A] = (p = 11l (1),

It completes the proof. L

We note that B, is homeomorphic to the bouques of n circles B,, and
By, is the dipole graph D,. Since the genus distribution is topological
invariant, we have the following corollary.

COROLLARY 3.2. (1) gu(B,) = 2" (n — 1)!e§f?2m“(n).
(2) gm(Dy) = (p = Dtef,(1).

The Stiling numbers of the first kind s(nk) are given by the coefficients
of
(x—=1)(z—-2)(z-n+1)= Z ROPY

k=0

and the Stiling numbers of the second kind S% are given by the coeffi-

cients of
=Y kS ()
(13 k "
k=0

On the other hand, a combinatorial argument shows that 5§lk b=
(=1)"*¢(n, k) and S& = (n, k), where c(n, k) is the number of per-
mutations in S, with k cycles, and p(n, k) is the number of partitions
of {1,2,--- ,n} into k nonempty blocks. Then s catisfy the following
recurrence equation

(k—1)
n—1

st = —(n — 1)351‘21 + s

n
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with the conditions sy’ = 0, s ™ . 1,3&1> = (=1)"Yn - 1)!. And A
satisfy the following recurrence equation

q — by ylk} *S(k 1)

n—1

with the conditions S‘U) = (, S(" : ,Sn“
Jackson [6] computed the number e A’)(n,) in terms of the Stirling num-

bers of the first and the second kinds as follows.
LEMMA 3.3. For positive integers n, p and k,
Linp-n—x

1 n+k+1
(p) _ W kD) ofn)
6kp (n) = 1+ np ; P ( L ) Tbnp an-

Now, Theorem 3.1 can be rephrased as follows.

THEOREM 3.4. The number of embeddings of 13,., into the surface of
genus m 18

; 2m N
( !)n(n B 1)' . l( L+ np — 2m + ! ) (l+np—=2m i l) ~(n)
m(B,) = —~ E , ghtrmp ’g
g 1( nyp) p 1+ np) ar P 14 np — M — L+ np n+l-

We notice that (,k (n) # 0if and only if 1 < & < 1 +np —n. By
Theorem 3.1, g;n(B,,) # 0 if and only if m is a nonnegatlve integer with
1< np—meAn +1 < 14np—n, or equivalently m is a nonnegative integer
with 0 < m < |™57%|. Hence, ¥(B,,) = 0 and yy(B,,) = [@J
Hence we have the following.

THEOREM 3.5. Every bouquet of dipoles is planar and upper embed-
dable.

We remark that the upper embeddability of bouquet of dipoles can
be also obtained from Xuong’s formula.

From the recurrence equations for s,,. and S'” . we can have

n 1 (n 1 .
s =1, sV '31 = —En(n + 1), 22 = ﬂn(n + L)(n+2)(3n + 5),

| S| ‘
SI(I,”) = l: ‘SYT(LI+)] - ;)—Tl,(n '+ 1)) ‘51“1 i)Z - 2471(f1 + v)(’”’ - 2)(3,] 1 1)

From this, we have the following.
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COROLLARY 3.6. The number of embeddings of B,,, into the sphere

is equal to
(PhH™(n — 1! I +mnp
p(l+np) \l+np—n/

COROLLARY 3.7. The number of embeddings of B, into the torus
is equal to

1 ‘ np—1
éz(p!)” n! (np* — np — 2)( P )

n

The numbers G, (B,,,) for small m, n and p are listed in the following.

| (n;p)\m { 0 1 2 3 4 [ total [

12 [ 1 0 0 0 0] 1
(13) | 2 2 0 0 o 4
(14) | 6 30 0 0 0| 36
Q2 4 2 0 0 0] 6
(2;3) 36 300 144 0 0 480
(2;4) 576 22176 118944 39744 0| 181440
Gl 1 0 0 0 0] 1
(3:2) | 40 80 0 0 0] 120
(3;3) 1728 1728 34272 284832 0| 322560

4. Embedding polynomials for bouquets of dipoles

We first give an example to be well acquainted with the concept of
embedding polynomials. Let K, be the complete graph on four vertices.
It is clear that Ky has sixteen embeddings. A routine computation gives
the following: Two of them are embedded in the sphere with four 3-sided
faces, six of them are embedded in the torus with one 4-sided face and
one 8-sided face, and the remained eight of them are embedded in the
torus with one 3-sided face and one 9-sided face. Therefore,

I‘J(A(ZJ) = 22:;1 + 62428 + 82329.

Recall that regions of the embedding associated with a rotation sys-
tem p for B,, are completely determined by cycles of the permutation
p(vo)p(vy) -+ - p(v,) 3. Moreover, the number of sides of a region R is
equals to the length of the corresponding cycle to R in p(vg)p(v1) - - - p(vy)
3. Let R denote the set of all rotation systems for B,,, S,, the set of
cycle permutations on {1,--- ,np} and &; the set of cycle permutations



Genus distributions for bouquets of d poles 233

on{(j—L)p+1,---,5p} for eack j = 1,- 1. By the proof of Lemma
2 2, we have thdt the corresponding monom1al to & rotation system p for
i 18 [0 1z§‘,fp ' It implies that

np

i1 Baypl(z;) LH )

PER k=]

It comes from the definition of roration system that

np np
@) _ N Jelonem,)
E I I Zok T S ok
PER k=1 (O, ) Sy Epn e x €y ]

it

N Z‘ 2 : I[ lum/x T )
o

(e )eCyx -, \ o€, k

VVe observe that for any two elements (,(’ € S,, with j,(¢) = n and

=n, debw o Z‘z‘;}wc} = :i..:aee,,,, ;Lplzzx( ). By combining our
dlscussmns and the fact that j,(---m,) = n for any (n,-- ) €
¢y x --- x €,, we have the following theorem.

THEOREM 4.1. The embedding polynomial for a bouquet of dipoles
Bn;p is

np

i[Bupl(z;) = ((p- 1YY" Z H (””‘

€6, k -1
wherea = (1 ---p)(p+1---2p) - ((n—1p+ 1 - np)cS,,

REMARK 4.2. If we convert the multivariate embedding polynomial
I 2y, 24, , Za,p INtO a univariate polynomial in - by dropping all sub-
scripts, then the coefficient of the term zw-2m-nti ig 9 Bay).

COROLLARY 4.3. The embedd‘ng polynomial tor a dipole D, is

D) = (- 10 3" [ 47

€S, k-1
where o = (1 --- p) € S,.

COROLLARY 4.4. The embedding polynomial tor a bouquet of n cir-

cles B, is
2n

i|B,)(z L H M(m,

Wrbz, k-1
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where o = (12)--- (2n — 12n) € S,,.

EXAMPLE 4.5. The embedding polynomial for the bouquet of two
circles By is
4222y + 224
The embedding polynomial for the dipole D is
625 + 242926 + 622
The embedding polynomial for the bouquet of two 3-dipoles By is
362524 + 144292426 + 1442225 + 1223 + 1442y,
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