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SELECTION THEOREMS WITH n-CONNECTEDNESS
IN-Sook Kim

ABSTRACT. We give a generalization of the selection theorem of
Ben-El-Mechaiekh and Oudadess to complete L D-metric spaces with
the aid of the notion of n-connectedness. Our new selection theorem
is used to obtain new results on fixed points and coincidence points
for compact lower semicontinuous set-valued maps with closed val-
ues consisting of D-sets in a complete L D-metric space.

0. Introduction

In 1991 Horvath [3] extended Michael’s selection theorem [4] for
closed convex valued lower semicontinuous maps to nonconvex values.
In 1995 Ben-El-Mechaiekh and Oudadess [1] gave a generalized selec-
tion theorem by combining the result in [3] with [5] related to sets of
topological dimension < 0. Using the concept of n-connectedness, we
introduce LD-metric spaces which are more general than [.c. metric
spaces given in [3]. The purpose in this paper is first to extend the
selection theorem in [1] to closed valued lower semicontinuous maps
with D-set values in a complete . D-metric space except possibly on
a set of topological dimension < 0 and then to give new results on
fixed points and coincidence points for compact ‘ower semicontinuous
set-valued maps with closed values consisting of D-sets in a complete
L D-metric space.

1. Preliminaries

Let X and Y be topological spaces. A set-vilued map (simply, a
map) T : X — Y is a function from X into the set 2¥ of all nonempty
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subsets of Y'; the map T~ : Y —o X is defined bv Ty := {z € X :
y € Tz} whenever T is surjective. A map T : X — Y is said to be
compact if its range | J . Tz is relatively compact in Y; and lower
semicontinuous if {zx € X : Tx NV # 0} is open in X for every open
set V in Y. A continuous function f: X — Y is called a selection of
T :X — Y whenever f(z) € Tz for every z in X.

If Z is a subset of a topological space X, then dimx Z < 0 means
that dim £ < 0 for every set E' C Z which is closed in X, where dim FE
denotes the covering dimension of F.

A topological space X is said to be n-connected for n > 0 if every
continuous map f : S¥ — X for k -2 n has a continuous extension over
BR*+1 where S* is the unit sphere and B*t! the closed unit ball in
R¥*1 Note that a contractible space is n-connected for every n > (.

Given a set Y, let (Y) denote the collection of all nonempty finite
subsets of Y. Let A, = co{ep,- - ,e,} be the standard simplex of
dimension n, where {eg,--- ,e,} is the canonical basis of R**!.

We introduce the following geomnetric structure as a generalization
of convex sets with the aid of the notion of n-connectedness.

Let Y be a topological space. A D-structure on Y is a map D :
(Y) — 2Y such that it satisfies the following conditions:

(1) for each A € (Y), D(A) is nonempty and n-connected for all
n > 0;
(2) for each A, B € (Y), A C B implies D(A) < D(B).

The pair (Y, D) is called a D-space; a subset Z of Y is said to be
a D-set if D(A) C Z for each A € (Z). A D-space (Y, D) is called an
LD-metric space if (Y,d) is a metric space such that for each ¢ > 0,
B(E,e) ={yeY :d(y,z) <e for some z € £}
is a D-set whenever £ C Y is a D-set and open balls are D-sets.

A D-space is a generalization of c-spaces in the sense of Horvath
[3. A simple example of a D-space but not a ¢-space is the space
Y, obtained by forming the disjoint union of the comb space X and
another copy X’ of X and identifying a point ¢y = (0,1) € X with the
corresponding point z € X', by setting D(A) := Y for every A € (Y).
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It can be shown that any D-space becomes a generalized convex
space introduced by Park and Kim [8].

A generalized convezr space (Y,I') consists of a topological space Y

and a map I : (Y) — 2¥ such that the following conditions are satis-
fied:

(1) for each A,B € (Y), AC B implies ['(A c I'(B);

(2) for each A € (Y) with |-| = n + 1, there exists a continuous
function ® 4 : A,, — I'(A)} such that ®4(A ;) C T'(J) for every
J € (A), where A, denotes the face of A, corresponding to
J e (A4).

LEMMA 0. A D-space (Y, D) is a generalized convex space.

Proof. Since (Y, D) is a D-space, it suffices to show that for each A €
(Y') with |A| = n+1, there exists a continuous function f : A,, — D(A)
such that f(A ;) C D(J) forevery J € (A). Let A = {ap,a1, -+ ,an} €
(Y) be given such that e¢; € Ay,,3. For each 7 = {0,1,---,n}, there
exists a y; € D({a;}). Define a function f° : A2 — D(A) on the 0-
skeleton of A,, by f°(e;) := ;. Then the functior. f° is continuous and
fO(A{az}) - D({az}) for i = 0,1.--- ,n.

Assume that a continuous function f* : AF — D(A) on the k-
skeleton of A, has been constructed such that f¥(A;) ¢ D(J) for all
J € (A) with |J| <k + 1.

Now let A; be a face of dimension k+1 of A,, and let J; := J\ {a;}
for each a; € J. Let A, be the boundary of A;. Then 0A; =
Ua,es Ay, is contained in the k-skeleton of A, and we have

rean c | rHean c Y pin e o).

a; &J a;€J

Note that there is a homeomorphism h : E¥*! — A such that h(S*) =
OAy. Since f*¥ o hlgk : S¥ — D(J) is continuous and D(J) is k-
connected, the function f* o h|q« has a continvous extension ¢gFt? :
E** — D(J). Thus, f5*! = g"*1oh=1: Ay -» D(J) is continuous
and 7" on, = f¥laa,-
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If Ay and Ay are (k + 1)-dimensional faces of A,,, A; # Ay and
AjN Ay #0, then it is clear that

k+1 k
i asna, = Flasoa, = 5 ana,

Therefore, on the (k+1)-skeleton of A,, we obtain a continuous function
fE1 o ARl D(A) which has the property f5*1 A ;) ¢ D(J) for all
J € (A) with |J| < k+ 2. It follows by the induction on k < n that a
continuous function f : A, — D(A) has been constructed such that

f(Ay) CD(J) forevery J € (A).

This completes the proof. E]

2. Selection theorems

In this paper, paracompact spaces are assumed to be Hausdorfl.
The following proposition is a basic statement for the new selection
theorem presented in this section.

PROPOSITION 1. Let X be a paracompact space, R a locally finite
open covering of X, (Y, D) a D-space, andn : R — Y a function. Then
there exists a continuous function ¢ : X — Y such that

g(z) e D{n(U) :z €U and U € R}) foreachz e X.

Proof. For any k > 1, (B**1, S*) is homeomorphic to (s, ds), where
s is a (k+1)-simplex and Js is its boundary (cf. [10]. 3.1.22). Therefore,
under the weak condition of n-connectedness instead of contractibility,
we can verify our result along the lines of proof of Theorem 3.1 in [3].0

Having established Proposition 1, we now turn 1o the selection the-
orem. It begins with the following lemma on e-approximate selections.

LEMMA 2. Let X be a paracompact space, (Y, D) an LD-metric
space, Z a subset of X withdimy Z < 0, and T : X — Y a lower
semicontinuous map such that Tx is a D-set for all x ¢ Z. Then for
every ¢ > 0, T admits an e-approximate selection, that is, a continuous
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single-valued function g. : X — Y such that g.(z. € B(Tx,¢) for every
re X.

The proof of Lemma 2 proceeds in precisely the same fashion as
Lemma 2 in [1], except that all c-sets in an l.c. metric space is replaced
by D-sets in an L D-metric space.

The following main theorem is a generalization of Ben-El-Mechaiekh
and Oudadess [1, Theorem 3] which generalizes Michael and Pixley [5,
Theorem 1.1].

THEOREM 3. Let X be a paracompact space, (Y,D) a complete
L D-metric space, Z a subset of X withdimy Z <0, andT: X — Y
a lower semicontinuous map with closed values such that Tz is a D-set
forallz ¢ Z. Then T admits a selection g: X — Y.

Proof. Set Ty := 1. By Lemma 2, there is & continuous function
g1 : X — Y such that

1
g1(z) € B(Thx, 5 for every 2 € X.

Hence,amap Ty : X — Y,z — Ti2N B(g¢1(x), %), is lower semicontin-
uous(cf. [4, Proposition 2.4]) and Thz is a D-set for all z & Z.

Assume that for £ = 1,--- )n, a lower semicontinuous map Ty :
X —o Y has been defined and a continuous function g : X — Y has
been chosen such that

T].I‘ =Tz

1
,F) for/ﬁ‘:2,---,n

T =T, 12N B(gk_l(.lj)
are nonempty D-sets for all z & /7 and
1
gx(z) € B(Tyz, ?’) for every «: € X.

Hence, a map Ty 11 : X — Y, T o1z := Thz N B(gn(z), 5v), is lower
semicontinuous and 7,41z is a D-set for all z ¢ Z. By Lemma 2, there
exists a continuous function g, 41 : X — Y such that

1
gni1(x) € B(Tyy1z, QJIT) for every x € X.
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It follows by induction that there is a sequence of functions g,, : X —» Y
which has the above properties for all n € N.

Let n € N be arbitrary. Then there is a y € Y such that y € T\, 112N
B(gnt1(z), 5277 for all z € X, hence we have

(g s1(2), 9n(2)) < dlgs1(2).9) + Ay, 00(2)) < g7 + 55

271
It is also clear that the sequence (g,,) is a uniformly Cauchy sequence.
Since Y is complete, (g,) converges uniformly on .X.

Define amapg: X — Y by

g(z) := lim gn(x) for z € X.
00
Then g is continuous and g(z) € Tz for every z € X since Tz is closed.
This completes the proof. O

Using Theorem 3, we give a sufficient condition for a lower semi-
continuous set-valued map with closed values to have the selection
extension property.

COROLLARY 4. Let (Y, D) be a complete L D-metric space such that
D({y}) = {y} forally € Y. Let X be a paracompact space, Z a subset
of X withdimx Z <0, and T : X — Y a lower semicontinuous map
with closed values such that Tx is a D-set for all 2 ¢ Z. If A is closed
in X, then every selection g for T'| \ extends to a selection for T'. Here
T| 4 denotes the restriction of T to A.

Proof. Let g : A — Y be a selection for T|4. We define a map
T,: X —Y by

{g(z)} for z€ A
Tyx = .
Tx for z¢ A

Then T, is a lower semicontinuous map with closed values and T,z is
a D-set for all x € Z. By Theorem 3, T, has a selection f: X — Y,
which is a selection for T that extends g because ¢ : A — Y is a
selection for T'| 4. 0
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COROLLARY 5. Let (Y, D) be a complete L D-1netric space such that
D({y}) = {y} forally € Y. Let X be a paracompact space, A a closed
subset of X and g : A — Y a continuous function. Then there is a
continuous function f : X — Y which extends g.

Proof. Amap T : X — Y, defined by

{g(z)} for z € A
Ty := .
{ Y for z & A

is lower semicontinuous and its values are closed D-sets. By Theorem
3, T has a continuous selection f : X — Y. Since f(x) € Tz for all
z € X, we obtain f|4 = g. O

3. Applications to fixed points and coincidence points
We need the following theoren: due to Park [7, Theorem 2].

THEOREM 6. Let X be a compact Hausdorff space, (Y,T') a general-
ized convex space and T' : X — Y a map with the property that there
isamap S: X —Y such that the following conditions are satisfied:

(1) for each z € X, A € (Sz) implies T(A) C Txz; and

(2) X =U{intS~y:y € Y}, where int denotes the interior.
Then T has a continuous selecticn f : X — Y. More precisely, there
exist a simplex A,, and two continuous functions p : X — A, and
q: A0, — Y such that f = qop and f(X) C I'(4) for some A € {Y)
with |[Al =n+ 1.

An immediate consequence of ‘Theorem 6 and Brouwer’s fixed point
theorem is in connection with fixed points and coincidence points for
set-valued maps. Since D-spaces are generalized convex spaces by
Lemma 0, Theorem 6 works for I)-spaces.

THEOREM 7. Let X be a compact Hausdorif space, (Y,D) a D-
space, S,T' : X —o Y two maps such that the foliowing conditions are
satisfied:

(1) A€ (Sx) implies D(A) C Tz for every x = X ;

(2) X=U{intS y:yeV}
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Then

(a) For any continuous function g : ¥ — X there is a yo € Y such that
Yo € Tg(yo)-

(b) If R: X —o Y is a set-valued map such that 77 : Y — X has a
continuous selection, then there is an xg € X such that RzoNTzg # 0.

Proof. (a) Let ¢ : Y — X be a continuous function. By Theorem
6, T" has a continuous selection f : X — Y and there exist continuous
functions p : X — A, and ¢ : A, — Y such that f = gop. The
continuous function ¢ : A, — A,.z + pogog(z}, has a fixed point
29, by Brouwer’s fixed point theorem. Setting yo = ¢(z0), we have

yo = (qopogoq)(z) = (fog)(yo) € Tg(yo)-

(b) Let h: Y — X be a continuous selection for R~. By (a), there is a
Yo € Y such that yo € Th(yp) and also h(yo) € R yo. If 2o := h{yp),
then Rxg N Txy # (. This completes the proof. |

Using the selection theorems above, we establish the existence of
fixed points and coincidence points for compact lower semicontinuous
set-valued maps with closed values in a complete I.[)-metric space.

THEOREM &. Let (Y, D) be an LD-metric space and suppose that
for every ¢ > 0 there are two maps S, T : Y -o Y such that the
following conditions are satisfied:

(1) A € (Sy) implies D(A) C Ty for everyy € Y;

(2) Y =U{intS y:ye Y} and

(3) ye B(Ty,¢) forallye Y.

Then any compact continuous function g : ¥ — Y has a fixed point.

Proof. Let ¢ > 0. Applying Theorem 7 to T'W , there is a point v,
in Y such that y. € Tg(y.), hence by (3), d(g(y.),y.) < €. Since ¢g(Y)
is relatively compact in Y and ¢ is continuous, it is easy to verify that
there exists a yg € Y such that g(yo) = yo. O

REMARK. Theorem 8 remains true if Y is a Hausdorff uniform space
with a D-structure D on Y.
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COROLLARY 9. Let (Y, D) be an L D-metric space such that D({y})
= {y} for ally € Y. Then any compact continuous functiong: Y — Y
has a fixed point.

Proof. Apply Theorem 8 witl S = T and T'r := Y for every z €
X. a

THEOREM 10. Let (Y, D) be a complete L D-metric space such that
D({y}) = {y} forally € Y and let Z be a subset of Y with dimy Z < 0.
Then any compact lower semicontinuous map T : Y —o Y with closed
values such that Ty is a D-set for all y & Z has a fixed point.

Proof. By Theorem 3, T has a continuous selection ¢ : ¥ — Y.
Since g is compact, by Corollary 3, g : ¥ — Y has a fixed point. Thus,
vo = g{yo) € Tyo for some yo € Y. O]

COROLLARY 11. Let (Y, D) be a complete LI)-metric space, and Z
a subset of Y with dimy Z < 0 such that D({y}) = {y} forally € Y.
LetT:Y — Y be a compact map with closed values such that Tz is a
D-set for all x ¢ Z and Ty is open for ally € Y. Then T has a fixed
point.

COROLLARY 12. Let X be a paracompact spece, (Y, D) a complete
L D-metric space such that D({y}) = {y} forally € Y, Z a subset of
X withdimyx Z <0, and let S,T:Y — Y be two maps such that the
following conditions are satisfied.

(1) T is a compact lower sericontinuous map with closed values

such that T'x is a D-set for all x € Z;
(2) ST :Y — X has a continuous selection.

Then there is an xo € X such that Szo N Txg # 0.

Proof. Let g : Y — X be a continuous selection for S~. The com-
position Tog : Y —o Y is compact, lower semicontinuous. By Theorem
10, there is a yo € Y such that v € Tg(yo). Since g(yo) € S yo, we
have Sg(yo) N Tg(ya) # 0. (]

With the help of D-functions, we give a fixed point theorem which
is a generalization of a result in [2].
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Let (X, D) be a D-space. A continuous function f: X x X - R is
said to be a D-function if it has the following properties:

(1) For every z € X and every A € R, {y € X : f(z,y) > A} isa
D-set.
(2) f(z,z) >0forallze X.

THEOREM 13. Let (X,D) be a compact Hausdorff D-space. Sup-
pose that for any (z1,z2) € X x X with x; # 2 there is a D-function
f: X xX — Rsuch that f(z1,z2) < 0. Then any compact continuous
function g : X — X has a fixed point.

Proof. For A < 0 and D-function f, let

To(f) = {(2,y) € X x X : f(z,) > AL

Then Tx(f) is a graph of the multimap z — {y = X : f(z,y) > A}
having open inverses and D-set values.

For A\; < 0 and D-functions f;,: =1,---,n, [\, , Th,(f:) is a graph
of the multimap = — {y € X : fi(z,y) > A; for all i} having open
inverses and D-set values. Since Y is compact, there exists a unique
uniform structure on Y (cf. [9], II 3.6 Satz 1).

Now let V' be an open entourage and (z1,z2) ¢ (X x X)\ V. By
assumption, there is a D-function f and a number A < 0 such that
f(z1,z2) < A. Therefore, we have (z1,z2) & T»(f). The collection

{{(X x X)\TA(f): A <0 and fis a D-function}

covers the closed set (X x X)\ V. By the compactness of X x X, there
are finitely many D-functions fi,- -, f, and numbers Ay, -+ A, <0
such that

(X x X)\V C (X x X) (n‘]T_“

hence [, 7T (fi) € V. By Theorem 8, any compact continuous
function g : X — X has a fixed point. -
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