SELECTION THEOREMS WITH n-CONNECTEDNESS

IN-SOOK KIM

ABSTRACT. We give a generalization of the selection theorem of Ben-El-Mechaiekh and Oudadess to complete LD-metric spaces with the aid of the notion of n-connectedness. Our new selection theorem is used to obtain new results on fixed points and coincidence points for compact lower semicontinuous set-valued maps with closed values consisting of \mathcal{D} -sets in a complete LD-metric space.

0. Introduction

In 1991 Horvath [3] extended Michael's selection theorem [4] for closed convex valued lower semicontinuous maps to nonconvex values. In 1995 Ben-El-Mechaiekh and Oudadess [1] gave a generalized selection theorem by combining the result in [3] with [5] related to sets of topological dimension ≤ 0 . Using the concept of n-connectedness, we introduce LD-metric spaces which are more general than l.c. metric spaces given in [3]. The purpose in this paper is first to extend the selection theorem in [1] to closed valued lower semicontinuous maps with \mathcal{D} -set values in a complete LD-metric space except possibly on a set of topological dimension ≤ 0 and then to give new results on fixed points and coincidence points for compact lower semicontinuous set-valued maps with closed values consisting of \mathcal{D} -sets in a complete LD-metric space.

1. Preliminaries

Let X and Y be topological spaces. A set-valued map (simply, a map) $T: X \multimap Y$ is a function from X into the set 2^Y of all nonempty

Received August 29, 1997.

¹⁹⁹¹ Mathematics Subject Classification: 54C65, 54C60, 55M20.

Key words and phrases: Selection theorem, n-connected, paracompact, LD-metric space, lower semicontinuous set-valued map, coincidence point, fixed point. Supported in part by Ministry of Education, Project Number BSRI-97-1413.

subsets of Y; the map $T^-: Y \multimap X$ is defined by $T^-y := \{x \in X : y \in Tx\}$ whenever T is surjective. A map $T: X \multimap Y$ is said to be compact if its range $\bigcup_{x \in X} Tx$ is relatively compact in Y; and lower semicontinuous if $\{x \in X : Tx \cap V \neq \emptyset\}$ is open in X for every open set Y in Y. A continuous function $f: X \multimap Y$ is called a selection of $T: X \multimap Y$ whenever $f(x) \in Tx$ for every x in X.

If Z is a subset of a topological space X, then $\dim_X Z \leq 0$ means that $\dim E \leq 0$ for every set $E \subset Z$ which is closed in X, where $\dim E$ denotes the covering dimension of E.

A topological space X is said to be n-connected for $n \geq 0$ if every continuous map $f: S^k \to X$ for $k \leq n$ has a continuous extension over B^{k+1} , where S^k is the unit sphere and B^{k+1} the closed unit ball in \mathbb{R}^{k+1} . Note that a contractible space is n-connected for every $n \geq 0$.

Given a set Y, let $\langle Y \rangle$ denote the collection of all nonempty finite subsets of Y. Let $\Delta_n = \operatorname{co}\{e_0, \dots, e_n\}$ be the standard simplex of dimension n, where $\{e_0, \dots, e_n\}$ is the canonical basis of \mathbb{R}^{n+1} .

We introduce the following geometric structure as a generalization of convex sets with the aid of the notion of n-connectedness.

Let Y be a topological space. A D-structure on Y is a map $\mathcal D$: $\langle Y \rangle \to 2^Y$ such that it satisfies the following conditions:

- (1) for each $A \in \langle Y \rangle$, $\mathcal{D}(A)$ is nonempty and n-connected for all $n \geq 0$;
- (2) for each $A, B \in \langle Y \rangle$, $A \subset B$ implies $\mathcal{D}(A) \subset \mathcal{D}(B)$.

The pair (Y, \mathcal{D}) is called a D-space; a subset Z of Y is said to be a \mathcal{D} -set if $\mathcal{D}(A) \subset Z$ for each $A \in \langle Z \rangle$. A D-space (Y, \mathcal{D}) is called an LD-metric space if (Y, d) is a metric space such that for each $\epsilon > 0$,

$$B(E,\epsilon) = \{y \in Y : d(y,z) < \epsilon \quad \text{for some } z \in E\}$$

is a $\mathcal{D}\text{-set}$ whenever $E\subset Y$ is a $\mathcal{D}\text{-set}$ and open balls are $\mathcal{D}\text{-sets}.$

A D-space is a generalization of c-spaces in the sense of Horvath [3]. A simple example of a D-space but not a c-space is the space Y, obtained by forming the disjoint union of the comb space X and another copy X' of X and identifying a point $x_0 = (0,1) \in X$ with the corresponding point $x'_0 \in X'$, by setting $\mathcal{D}(A) := Y$ for every $A \in \langle Y \rangle$.

It can be shown that any *D*-space becomes a generalized convex space introduced by Park and Kim [8].

A generalized convex space (Y,Γ) consists of a topological space Y and a map $\Gamma: \langle Y \rangle \to 2^Y$ such that the following conditions are satisfied:

- (1) for each $A, B \in \langle Y \rangle$, $A \subset B$ implies $\Gamma(A) \subset \Gamma(B)$;
- (2) for each $A \in \langle Y \rangle$ with |A| = n + 1, there exists a continuous function $\Phi_A : \Delta_n \to \Gamma(A)$ such that $\Phi_A(\Delta_J) \subset \Gamma(J)$ for every $J \in \langle A \rangle$, where Δ_J denotes the face of Δ_n corresponding to $J \in \langle A \rangle$.

LEMMA 0. A D-space (Y, \mathcal{D}) is a generalized convex space.

Proof. Since (Y, \mathcal{D}) is a D-space, it suffices to show that for each $A \in \langle Y \rangle$ with |A| = n+1, there exists a continuous function $f: \Delta_n \to \mathcal{D}(A)$ such that $f(\Delta_J) \subset \mathcal{D}(J)$ for every $J \in \langle A \rangle$. Let $A = \{a_0, a_1, \cdots, a_n\} \in \langle Y \rangle$ be given such that $e_i \in \Delta_{\{u_i\}}$. For each $i \in \{0, 1, \cdots, n\}$, there exists a $y_i \in \mathcal{D}(\{a_i\})$. Define a function $f^0: \Delta_n^0 \to \mathcal{D}(A)$ on the 0-skeleton of Δ_n by $f^0(e_i) := y_i$. Then the function f^0 is continuous and $f^0(\Delta_{\{a_i\}}) \subset \mathcal{D}(\{a_i\})$ for $i = 0, 1, \cdots, n$.

Assume that a continuous function $f^k: \Delta_n^k \to \mathcal{D}(A)$ on the k-skeleton of Δ_n has been constructed such that $f^k(\Delta_J) \subset \mathcal{D}(J)$ for all $J \in \langle A \rangle$ with $|J| \leq k+1$.

Now let Δ_J be a face of dimension k+1 of Δ_n and let $J_i := J \setminus \{a_i\}$ for each $a_i \in J$. Let $\partial \Delta_J$ be the boundary of Δ_J . Then $\partial \Delta_J = \bigcup_{a_i \in J} \Delta_{J_i}$ is contained in the k-skeleton of Δ_n and we have

$$f^k(\partial \Delta_J) \subset \bigcup_{a_i \in J} f^k(\Delta_{J_i}) \subset \bigcup_{a_i \in J} \mathcal{D}(J_i) \subset \mathcal{D}(J).$$

Note that there is a homeomorphism $h: E^{k+1} \to \Delta_J$ such that $h(S^k) = \partial \Delta_J$. Since $f^k \circ h|_{S^k}: S^k \to \mathcal{D}(J)$ is continuous and $\mathcal{D}(J)$ is k-connected, the function $f^k \circ h|_{S^k}$ has a continuous extension $g^{k+1}: E^{k+1} \to \mathcal{D}(J)$. Thus, $f_J^{k+1}:=g^{k+1}\circ h^{-1}: \Delta_J \to \mathcal{D}(J)$ is continuous and $f_J^{k+1}|_{\partial \Delta_J}=f^k|_{\partial \Delta_J}$.

If Δ_J and $\Delta_{J'}$ are (k+1)-dimensional faces of Δ_n , $\Delta_J \neq \Delta_{J'}$ and $\Delta_J \cap \Delta_{J'} \neq \emptyset$, then it is clear that

$$f_J^{k+1}|_{\Delta_J\cap\Delta_{J'}}=f^k|_{\Delta_J\cap\Delta_{J'}}=f_{J'}^{k+1}|_{\Delta_J\cap\Delta_{J'}}.$$

Therefore, on the (k+1)-skeleton of Δ_n we obtain a continuous function $f^{k+1}:\Delta_n^{k+1}\to \mathcal{D}(A)$ which has the property $f^{k+1}(\Delta_J)\subset \mathcal{D}(J)$ for all $J\in \langle A\rangle$ with $|J|\leq k+2$. It follows by the induction on $k\leq n$ that a continuous function $f:\Delta_n\to \mathcal{D}(A)$ has been constructed such that

$$f(\Delta_J) \subset \mathcal{D}(J)$$
 for every $J \in \langle A \rangle$.

П

This completes the proof.

2. Selection theorems

In this paper, paracompact spaces are assumed to be Hausdorff. The following proposition is a basic statement for the new selection theorem presented in this section.

PROPOSITION 1. Let X be a paracompact space, \mathcal{R} a locally finite open covering of X, (Y, \mathcal{D}) a D-space, and $\eta : \mathcal{R} \to Y$ a function. Then there exists a continuous function $g: X \to Y$ such that

$$g(x) \in \mathcal{D}(\{\eta(U) : x \in U \text{ and } U \in \mathcal{R}\})$$
 for each $x \in X$.

Proof. For any $k \geq 1$, (B^{k+1}, S^k) is homeomorphic to $(s, \partial s)$, where s is a (k+1)-simplex and ∂s is its boundary (cf. [10], 3.1.22). Therefore, under the weak condition of n-connectedness instead of contractibility, we can verify our result along the lines of proof of Theorem 3.1 in [3].

Having established Proposition 1, we now turn to the selection theorem. It begins with the following lemma on ϵ -approximate selections.

LEMMA 2. Let X be a paracompact space, (Y, \mathcal{D}) an LD-metric space, Z a subset of X with $\dim_X Z \leq 0$, and $T: X \multimap Y$ a lower semicontinuous map such that Tx is a \mathcal{D} -set for all $x \notin Z$. Then for every $\epsilon > 0$, T admits an ϵ -approximate selection, that is, a continuous

single-valued function $g_{\epsilon}: X \to Y$ such that $g_{\epsilon}(x) \in B(Tx, \epsilon)$ for every $x \in X$.

The proof of Lemma 2 proceeds in precisely the same fashion as Lemma 2 in [1], except that all c-sets in an l.c. metric space is replaced by \mathcal{D} -sets in an LD-metric space.

The following main theorem is a generalization of Ben-El-Mechaiekh and Oudadess [1, Theorem 3] which generalizes Michael and Pixley [5, Theorem 1.1].

THEOREM 3. Let X be a paracompact space, (Y, \mathcal{D}) a complete LD-metric space, Z a subset of X with $\dim_X Z \leq 0$, and $T: X \multimap Y$ a lower semicontinuous map with closed values such that Tx is a \mathcal{D} -set for all $x \notin Z$. Then T admits a selection g: X - Y.

Proof. Set $T_1 := T$. By Lemma 2, there is a continuous function $g_1 : X \to Y$ such that

$$g_1(x) \in B(T_1x, \frac{1}{2}) \qquad ext{for every } x \in X.$$

Hence, a map $T_2: X \multimap Y, x \mapsto T_1x \cap B(g_1(x), \frac{1}{2})$, is lower semicontinuous(cf. [4, Proposition 2.4]) and T_2x is a \mathcal{D} -set for all $x \notin Z$.

Assume that for $k=1,\cdots,n$, a lower semicontinuous map $T_k:X\multimap Y$ has been defined and a continuous function $g_k:X\to Y$ has been chosen such that

$$T_1x = Tx$$

$$T_k x = T_{k-1} x \cap B(g_{k-1}(x), \frac{1}{2^{k-1}})$$
 for $k = 2, \dots, n$

are nonempty \mathcal{D} -sets for all $x \notin \mathbb{Z}$ and

$$g_k(x) \in B(T_k x, \frac{1}{2^k})$$
 for every $x \in X$.

Hence, a map $T_{n+1}: X \multimap Y$, $T_{n+1}x := T_nx \cap B(g_n(x), \frac{1}{2^n})$, is lower semicontinuous and $T_{n+1}x$ is a \mathcal{D} -set for all $x \notin Z$. By Lemma 2, there exists a continuous function $g_{n+1}: X \to Y$ such that

$$g_{n+1}(x) \in B(T_{n+1}x, \frac{1}{2^{n+1}})$$
 for every $x \in X$.

It follows by induction that there is a sequence of functions $g_n: X \to Y$ which has the above properties for all $n \in \mathbb{N}$.

Let $n \in \mathbb{N}$ be arbitrary. Then there is a $y \in Y$ such that $y \in T_{n+1}x \cap B(g_{n+1}(x), \frac{1}{2^{n+1}})$ for all $x \in X$, hence we have

$$d(g_{n+1}(x),g_n(x)) \leq d(g_{n+1}(x),y) + d(y,g_n(x)) < \frac{1}{2^{n+1}} + \frac{1}{2^n}.$$

It is also clear that the sequence (g_n) is a uniformly Cauchy sequence. Since Y is complete, (g_n) converges uniformly on X.

Define a map $g: X \to Y$ by

$$g(x) := \lim_{n \to \infty} g_n(x)$$
 for $x \in X$.

Then g is continuous and $g(x) \in Tx$ for every $x \in X$ since Tx is closed. This completes the proof.

Using Theorem 3, we give a sufficient condition for a lower semicontinuous set-valued map with closed values to have the selection extension property.

COROLLARY 4. Let (Y, \mathcal{D}) be a complete LD-metric space such that $\mathcal{D}(\{y\}) = \{y\}$ for all $y \in Y$. Let X be a paracompact space, Z a subset of X with $\dim_X Z \leq 0$, and $T: X \multimap Y$ a lower semicontinuous map with closed values such that Tx is a \mathcal{D} -set for all $x \notin Z$. If A is closed in X, then every selection g for $T|_A$ extends to a selection for T. Here $T|_A$ denotes the restriction of T to A.

Proof. Let $g:A\to Y$ be a selection for $T|_A$. We define a map $T_g:X\multimap Y$ by

$$T_g x := \; \left\{ egin{array}{ll} \{g(x)\} & \quad ext{for} \;\; x \in A \ Tx & \quad ext{for} \;\; x
otin A \,. \end{array}
ight.$$

Then T_g is a lower semicontinuous map with closed values and T_gx is a \mathcal{D} -set for all $x \notin Z$. By Theorem 3, T_g has a selection $f: X \to Y$, which is a selection for T that extends g because $g: A \to Y$ is a selection for $T|_A$.

COROLLARY 5. Let (Y, \mathcal{D}) be a complete LD-metric space such that $\mathcal{D}(\{y\}) = \{y\}$ for all $y \in Y$. Let X be a paracompact space, A a closed subset of X and $g: A \to Y$ a continuous function. Then there is a continuous function $f: X \to Y$ which extends g.

Proof. A map $T: X \multimap Y$, defined by

$$Tx := \; \left\{ egin{array}{ll} \{g(x)\} & \quad \mbox{for} \;\; x \in A \ Y & \quad \mbox{for} \;\; x
ot
ot A \end{array}
ight.$$

is lower semicontinuous and its values are closed \mathcal{D} -sets. By Theorem 3, T has a continuous selection $f: X \to Y$. Since $f(x) \in Tx$ for all $x \in X$, we obtain $f|_A = g$.

3. Applications to fixed points and coincidence points

We need the following theorem due to Park [7, Theorem 2].

THEOREM 6. Let X be a compact Hausdorff space, (Y, Γ) a generalized convex space and $T: X \multimap Y$ a map with the property that there is a map $S: X \multimap Y$ such that the following conditions are satisfied:

- (1) for each $x \in X$, $A \in \langle Sx \rangle$ implies $\Gamma(A) \subset Tx$; and
- (2) $X = \bigcup \{ int S^-y : y \in Y \}$, where int denotes the interior.

Then T has a continuous selection $f: X \to Y$. More precisely, there exist a simplex Δ_n and two continuous functions $p: X \to \Delta_n$ and $q: \Delta_n \to Y$ such that $f = q \circ p$ and $f(X) \subset \Gamma(A)$ for some $A \in \langle Y \rangle$ with |A| = n + 1.

An immediate consequence of Theorem 6 and Brouwer's fixed point theorem is in connection with fixed points and coincidence points for set-valued maps. Since D-spaces are generalized convex spaces by Lemma 0, Theorem 6 works for D-spaces.

THEOREM 7. Let X be a compact Hausdorff space, (Y, \mathcal{D}) a D-space, $S, T: X \multimap Y$ two maps such that the following conditions are satisfied:

- (1) $A \in \langle Sx \rangle$ implies $\mathcal{D}(A) \subset Tx$ for every $x \in X$:
- $(2) \ X=\bigcup \left\{ \operatorname{int} S^{-}y:y\in Y\right\} .$

Then

- (a) For any continuous function $g: Y \to X$ there is a $y_0 \in Y$ such that $y_0 \in Tg(y_0)$.
- (b) If $R: X \multimap Y$ is a set-valued map such that $R^-: Y \multimap X$ has a continuous selection, then there is an $x_0 \in X$ such that $Rx_0 \cap Tx_0 \neq \emptyset$.

Proof. (a) Let $g: Y \to X$ be a continuous function. By Theorem 6, T has a continuous selection $f: X \to Y$ and there exist continuous functions $p: X \to \Delta_n$ and $q: \Delta_n \to Y$ such that $f = q \circ p$. The continuous function $\varphi: \Delta_n \to \Delta_n, z \mapsto p \circ g \circ q(z)$, has a fixed point z_0 , by Brouwer's fixed point theorem. Setting $y_0 = q(z_0)$, we have

$$y_0 = (q \circ p \circ g \circ q)(z_0) = (f \circ g)(y_0) \in Tg(y_0).$$

(b) Let $h: Y \to X$ be a continuous selection for R^- . By (a), there is a $y_0 \in Y$ such that $y_0 \in Th(y_0)$ and also $h(y_0) \in R^-y_0$. If $x_0 := h(y_0)$, then $Rx_0 \cap Tx_0 \neq \emptyset$. This completes the proof.

Using the selection theorems above, we establish the existence of fixed points and coincidence points for compact lower semicontinuous set-valued maps with closed values in a complete LD-metric space.

THEOREM 8. Let (Y, \mathcal{D}) be an LD-metric space and suppose that for every $\epsilon > 0$ there are two maps $S, T : Y \multimap Y$ such that the following conditions are satisfied:

- (1) $A \in \langle Sy \rangle$ implies $\mathcal{D}(A) \subset Ty$ for every $y \in Y$;
- (2) $Y = \bigcup \{ \text{int } S^-y : y \in Y \}; \text{ and }$
- (3) $y \in B(Ty, \epsilon)$ for all $y \in Y$.

Then any compact continuous function $g: Y \to Y$ has a fixed point.

Proof. Let $\epsilon > 0$. Applying Theorem 7 to $T|_{\overline{g(Y)}}$, there is a point y_{ϵ} in Y such that $y_{\epsilon} \in Tg(y_{\epsilon})$, hence by (3), $d(g(y_{\epsilon}), y_{\epsilon}) < \epsilon$. Since g(Y) is relatively compact in Y and g is continuous, it is easy to verify that there exists a $y_0 \in Y$ such that $g(y_0) = y_0$.

REMARK. Theorem 8 remains true if Y is a Hausdorff uniform space with a D-structure \mathcal{D} on Y.

COROLLARY 9. Let (Y, \mathcal{D}) be an LD-metric space such that $\mathcal{D}(\{y\}) = \{y\}$ for all $y \in Y$. Then any compact continuous function $g: Y \to Y$ has a fixed point.

Proof. Apply Theorem 8 with S = T and T.x := Y for every $x \in X$.

THEOREM 10. Let (Y, \mathcal{D}) be a complete LD-inetric space such that $\mathcal{D}(\{y\}) = \{y\}$ for all $y \in Y$ and let Z be a subset of Y with $\dim_Y Z \leq 0$. Then any compact lower semicontinuous map $T: Y \multimap Y$ with closed values such that Ty is a \mathcal{D} -set for all $y \notin Z$ has a fixed point.

Proof. By Theorem 3, T has a continuous selection $g: Y \to Y$. Since g is compact, by Corollary 9, $g: Y \to Y$ has a fixed point. Thus, $y_0 = g(y_0) \in Ty_0$ for some $y_0 \in Y$.

COROLLARY 11. Let (Y, \mathcal{D}) be a complete LD-metric space, and Z a subset of Y with $\dim_Y Z \leq 0$ such that $\mathcal{D}(\{y\}) = \{y\}$ for all $y \in Y$. Let $T: Y \multimap Y$ be a compact map with closed values such that Tx is a \mathcal{D} -set for all $x \notin Z$ and T^-y is open for all $y \in Y$. Then T has a fixed point.

COROLLARY 12. Let X be a paracompact space, (Y, \mathcal{D}) a complete LD-metric space such that $\mathcal{D}(\{y\}) = \{y\}$ for all $y \in Y$, Z a subset of X with $\dim_X Z \leq 0$, and let $S, T: Y \multimap Y$ be two maps such that the following conditions are satisfied.

- (1) T is a compact lower semicontinuous map with closed values such that Tx is a \mathcal{D} -set for all $x \notin Z$:
- (2) $S^-: Y \multimap X$ has a continuous selection.

Then there is an $x_0 \in X$ such that $Sx_0 \cap Tx_0 \neq \emptyset$.

Proof. Let $g: Y \to X$ be a continuous selection for S^- . The composition $T \circ g: Y \multimap Y$ is compact, lower semicontinuous. By Theorem 10, there is a $y_0 \in Y$ such that $y_0 \in Tg(y_0)$. Since $g(y_0) \in S^-y_0$, we have $Sg(y_0) \cap Tg(y_0) \neq \emptyset$.

With the help of \mathcal{D} -functions, we give a fixed point theorem which is a generalization of a result in [2].

Let (X, \mathcal{D}) be a D-space. A continuous function $f: X \times X \to \mathbb{R}$ is said to be a \mathcal{D} -function if it has the following properties:

- (1) For every $x \in X$ and every $\lambda \in \mathbb{R}$, $\{y \in X : f(x,y) > \lambda\}$ is a \mathcal{D} -set.
- (2) $f(x,x) \geq 0$ for all $x \in X$.

THEOREM 13. Let (X, \mathcal{D}) be a compact Hausdorff D-space. Suppose that for any $(x_1, x_2) \in X \times X$ with $x_1 \neq x_2$ there is a \mathcal{D} -function $f: X \times X \to \mathbb{R}$ such that $f(x_1, x_2) < 0$. Then any compact continuous function $g: X \to X$ has a fixed point.

Proof. For $\lambda < 0$ and \mathcal{D} -function f, let

$$T_{\lambda}(f) = \{(x,y) \in X \times X : f(x,y) > \lambda\}.$$

Then $T_{\lambda}(f)$ is a graph of the multimap $x \mapsto \{y \in X : f(x,y) > \lambda\}$ having open inverses and \mathcal{D} -set values.

For $\lambda_i < 0$ and \mathcal{D} -functions $f_i, i = 1, \dots, n, \bigcap_{i=1}^n T_{\lambda_i}(f_i)$ is a graph of the multimap $x \mapsto \{y \in X : f_i(x,y) > \lambda_i \text{ for all } i\}$ having open inverses and \mathcal{D} -set values. Since Y is compact, there exists a unique uniform structure on Y (cf. [9], II 3.6 Satz 1).

Now let V be an open entourage and $(x_1, x_2) \in (X \times X) \setminus V$. By assumption, there is a \mathcal{D} -function f and a number $\lambda < 0$ such that $f(x_1, x_2) < \lambda$. Therefore, we have $(x_1, x_2) \notin \overline{T_{\lambda}(f)}$. The collection

$$\{(X \times X) \setminus \overline{T_{\lambda}(f)} : \lambda < 0 \text{ and } f \text{ is a } \mathcal{D}\text{-function}\}$$

covers the closed set $(X \times X) \setminus V$. By the compactness of $X \times X$, there are finitely many \mathcal{D} -functions f_1, \dots, f_n and numbers $\lambda_1, \dots, \lambda_n < 0$ such that

$$(X \times X) \setminus V \subset (X \times X) \setminus \bigcap_{i=1}^{n} \overline{T_{\lambda_i}}(\overline{f_i})$$

hence $\bigcap_{i=1}^n T_{\lambda_i}(f_i) \subset V$. By Theorem 8, any compact continuous function $g: X \to X$ has a fixed point.

References

- [1] H. Ben-El-Mechaiekh and M. Oudadess, Some selection theorems without convexity, J. Math. Anal. Appl. 195 (1995), 614-618.
- [2] Ky Fan, A generalization of Tychonoff's fixed point theorem, Math. Ann. 142 (1961), 305-310.
- [3] C. Horvath, Contractibility and generalized convexity, J. Math. Anal. Appl. 156 (1991), 341-357.
- [4] E. Michael, Continuous selection 1, Ann. of Math. 63 (1956), 361-382.
- [5] E. Michael and C. Pixley, A unified theorem on continuous selections, Pacific J. Math. 87 (1980), 187-188.
- [6] E. Michael, Continuous selections and countable sets, Fund. Math. 111 (1981), 1-10.
- [7] S. Park, Five episodes related to generalized convex spaces, Proc. Nonlinear Funct. Anal. Appl. 2 (1997), 49-61.
- [8] S. Park and H. Kim, Coincidence theorems for admissible multifunctions on generalized convex spaces, J. Math. Anal. Appl. 197 (1996), 173-187.
- [9] H. Schubert, Topologie, 4. Aufl., B.G.Teubner, Stuttgart, 1975.
- [10] E. H. Spanier, Algebraic topology, McGraw-Hill, New York, 1966.

Department of Mathematics Sung Kyun Kwan University Suwon 440-746, Korea

E-mail: iskim@math.skku.ac.kr