HOMOLOGY OF THE TRIPLE LOOP SPACE OF THE EXCEPTIONAL LIE GROUP $F_4$

  • Younggi Choi (Department of Mathematics The University of Seoul (Previous name: Seoul City University) Seoul 130-743, Korea) ;
  • Seonhee Yoon (Global Analysis Research Center Department of Mathematics Seoul National University Seoul 151-742, Korea)
  • Published : 1998.02.01

Abstract

We study the homology of the tripe loop space of the exceptional Lie group $F_4$ by exploiting the spectral sequences and the homology operators.

Keywords

References

  1. Comm. Math. Phys. v.61 Topological aspect: of Yang-Mills theory M.F. Atiyah;J.D.S. Jones
  2. Ann. of Math. v.137 Topology of instanton moduli spaces, Ⅰ: The Atiyah-Jones conjecture C.P. Boyer;J.C. Hurtubise;B.M. Mann;R.J. Milgram
  3. J. Diff. Geom. v.28 Homology operations on istantons C.P. Boyer;B.M. Mann
  4. Trans. Am. Math. Soc. v.323 On the homology of SU(n) instantons C.P. Boyer;B.M. Mann;D. Waggoner
  5. Math. Z. v.222 Homology of the double and triple loop space of So(n) Y. Choi
  6. Lect. Notes. Math. v.533 The homology of iterated loop spaces F.R. Cohen;T. Lada;J.P. May
  7. Bol. Soc. Mat. Mex v.7 Nota sobre la Transpotencia de Cartan S. Gitler
  8. Mem. Amer. Math. Soc. v.223 H-spaces with torsion J. Harper
  9. Ann. Math. v.74 on the homotopy group of the classical groups B. Harris
  10. Handbook of algebraic topology Homotopy theory of Lie groups M. Mimura
  11. J. Diff. Geom. v.29 The stable topology of self-dual moduli spaces C.H. Taubes
  12. University of Kentucky Loop spaces and the classical unitary groups D. Waggoner
  13. University of Rochester The homology of the double loop space of the exceptional Lie groups S. Yoon