ASSOUAD DIMENSION: ANTIFRACTAL METRIZATION, POROUS SETS, AND HOMOGENEOUS MEASURES

  • 발행 : 1998.02.01

초록

We prove that a non-empty separable metrizable space X admits a totally bounded metric for which the metric dimension of X in Assouad's sense equals the topological dimension of X, which leads to a characterization for the latter. We also give a characterization based on this Assouad dimension for the demension (embedding dimension) of a compact set in a Euclidean space. We discuss Assouad dimension and these results in connection with porous sets and measures with the doubling property. The elementary properties of Assouad dimension are proved in an appendix.

키워드

참고문헌

  1. Bull. Sci. Math. v.61 no.2 Remarques sur l'extension d'un ensenble A. Appert
  2. Publ. Math. Orsay 223-7769. Univ. Paris XI Espaccs metriques, plongments, facteurs, These de doctorat d'Etat P. Assouad
  3. C.R. Acad. Sci. Paris Ser. A v.288 Etude d'une dimension metrique liee a la possibilite de plongments dans $R^n$ P. Assouad
  4. Publ. Math. Orsay 80, 7, Univ. Paris XI, Orsay Psecudodistances, facteurs et dimension metrique, Seminaire d'analyse harmonique 1979-1980 P. Assouad
  5. Bull. Soc. Math. France v.111 Plongements Lipschitziens dans $R^n$ P. Assouad
  6. Mem. Amer. Math. Soc. v.71 Characterizing k-dimensional universal Menger compacta M. Bestvina
  7. Comvergence of probability measures P. Billingsley
  8. Potential Anal. v.4 Sobolev inequalities on homogeneous spaces M. Biroli;U. Mosco
  9. Fund. Math. v.52 Eine Einbettung m-dimensionaler Mengen in einen(m+1)-dimensionalen absoluten Retrakt H.G. Bothe
  10. Fund. Math. v.56 Universalmengen bezuglich der Lage im $E^n$ H.G. Bothe
  11. Bull. Sci. Math. v.52 no.2 Ensembles empropres et nombrc dimensionnel G. Bouligand
  12. Michigan Math. J. v.19 Sets of constant distance from a planar set M. Brown
  13. Pacific J. Math. v.84 A characterization of dimension of topological spaces by totally bounded pseudometrics J. Bruijning
  14. Dept. Math. Research Reports no.9 On the existence of (d,s)-measures on closed sets, Univ. Umea P. Bylund
  15. Lecture Notes in Math. v.242 Analyse harmonique non-commutative sur certains espaces homogenes;Etude de certains integrales singlieres R.R. Coifman;G. Weiss
  16. Decompositions of manifolds R.J. Daverman
  17. Proc. London Math. Soc. v.20 no.3 Increasing sequences of sets and Hausdorff measure R.O. Davies
  18. Mat. Sb. (N.S.) v.109 no.151 Free interpolation sets for Holder classes E.M. Dyn'kin
  19. English trans. in Math. USSR-Sb. v.37
  20. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov.(LOMI) v.126 Freeinterpolation by functions with derivatives in $H^1$ E.M. Dyn'kin
  21. English transl. in J. Siviet Math. v.27
  22. Lecture Notes in Math. v.1043 Homogeneous measures on subsets of $R^n$, Linear and complex analysis problem book E.M. Dyn'kin;V.P.Havin(ed.);S.V. Hruscev(ed.);N.K. Nikol'skii(ed.)
  23. Proc. Conf. (Park City, Utah.) Demension theory, Ⅰ, Geometric topology R.D. Edwards;L.C. Glaser(ed.);T.B. Rushing(ed.)
  24. Lecture Nores in Math. v.438
  25. Topology Appl. v.24 Approximating codimension≥3 σ-compacta with locally homotopically unknotted emceddings R.D. Edwards
  26. Dimension theory R. Engelking
  27. Fractal geometry K. Falconer
  28. Amer. Math. Monthly v.100 A characterization of under product spaces N. Falkner
  29. J. Differential Geom v.17 The topology of four-dimensional manifolds M.H. Freedman
  30. Rev. Roumaine Math. Pures Appl. v.29 La quasi-conformite des inversions dans un espace norme M. Frunza;S. Frunza
  31. Trans. Amer. Math. Soc. v.194 Pseudo-boundaries and pseudo-interiors in euclidean spaces and topological manifolds R. Geoghegan;R.R. Summerhill
  32. Ann. Acad. Sci. Fenn. Ser. A I Math. v.7 F-harmonic measure in space S. Granlund;P. Lindqvist;O. Martio
  33. Proc. London Math. Soc. v.70 no.3 On demension and on the existence of sets of finite positive Husdorff measure J.D. Howroyd
  34. Dimension theory W. Hurewicz;H. Wallman
  35. Trans. Amer. Math. Soc. v.341 Besov spaces on closed subsets of $R^n$ A. Johnsson
  36. Lecture Notes in Math v.541 Haar-Mass und Hausdorff-Mass, Measure theory, Proc. Conf.(Oberwolfach, 1975) D. Kahnert;A. Bellow(ed.);D. Kolzow(ed.)
  37. Topology Proc. v.11 Hausdorff dimension J. Keesling
  38. Math. Ann. v.309 Haysdorff dimension and mean porosity P. Koskela;S. Rohde
  39. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov (LOMI) v.30 Interpolation of analytic functions smooth to the boundary A.M. Ktochigov
  40. English transl. in J. Soviet Math. v.4
  41. Proc. London Math. Soc. v.17 no.3 A new theory of dimension D.G. Larman
  42. Ann. Statist v.1 Convergence of estimates under dimensionality restrictions L. Le Cam
  43. Proc. Summer Res. Inst. on Statistical Inference for Stochastic Processes(Bloomington, Indiana, 1974) v.1 On local and global properties in the theory of asymptotic normality of experiments, Stochastic processes and related topics L. Le Cam;M.L. Puri(ed.)
  44. Fund. Math. v.150 Ultrametric spaces bi-Lipschitz embeddable in $R^n$ K. Luosto
  45. Math. Scand. v.49 Approximating continuous maps of metric spaces into manifolds by embeddings J. Luukkainen
  46. Fund. Math. v.144 Minimal bi-Lipschitz embedding dimension of ultrametric spaces J. Luukkainen;H. Movahedi-Lankarani
  47. Ann. Acad. Sci. Fenn. Ser. A I Math. v.3 Elements of Lipschitz topology J. Luukkainen;J. Vaisala
  48. Adv. Math. v.33 Lipschitz functions on spaces of homogeneous type R.A. Macias;C. Segovia
  49. Fractals: form,chance, and dimension B.B. Mandelbrot
  50. Fund. Math. v.28 La dimension et la measure E. Marczewski;(E. Szpilrajn)
  51. Exposition. Math. v.5 Whitney cubes, p-capacity, and Minkowski content O. Martio;M. Vuorinen
  52. Proc. Amer. Math. Soc. v.116 On the inverse of Mane's projection H. Movahedi-Lankarani
  53. Proc. Amer. Math. Soc. v.123 Ultrametrics and geometric measures H. Movahedi-Lankarani;R. Wells
  54. Fund. Math. v.123 Remarks on characterization of dimension of separable metrizable spaces Nguyen To Nhu
  55. National Center for Scientific Research, Institute of Mathematics, Hanoi Some applications of the construction of Menger curve to the geometric measure theory, Essays on nonlinear analysis and optimization problems Nguyen To Nhu
  56. Ann. of Math. v.129 no.2 Metriques de Varnot-Caratheodory et quasiisometries des espaces symetriques de rand un P. Pansu
  57. Ann. of Math. v.33 no.2 Sur une propriete metrique de la dimension L. Pontrjagin;L. Schnirelmann
  58. Proc. Amer. Math. Soc. v.25 Note on metric dimension R.T. Prosser
  59. Comment. Math. Helv. v.43 Doppelverhaltnisse und quasikonforme abbildungen H. Renggli
  60. Introduction to piecewise-linear topology C.P. Rourke;B.J. Sanderson
  61. Trans. Amer. Math. Soc. v.334 Hausdorff dimension of wild fractals T.B. Rushing
  62. Proc. London Math. Soc. v.62 no.3 On the Minkowski dimension of strongly porous fractal sets in $R^n$ A. Salli
  63. Ann. Acad. Sci. Fenn. Ser. A I Math. v.1 The Hausdorff dimension of the branch set of a quasiregular mapping J. Sarvas
  64. Ultrametric calculus W.H. Schikhof
  65. Rev. Mat. Iberoamericana v.12 On the nonexistence of bilipschitz parameterizations and geometric problems about $A_∞$-weights S. Semmes
  66. Trans. Amer. Math. Soc. v.233 Weak $L_1$ characterizations of Poisson integrals, Green potentials, and $H^p$ spaces P. P. Sjogren
  67. Dokl. Akad. Nauk SSSR v.201 Solution of Menger's problem in the class of compacta M.A.Stan'ko
  68. English transl. in Soviet Math. Dokl. v.12
  69. Mat. Sb. (N.S.) v.90 no.132 Approximation of compacta in $E^n$ in codimension greater than two M.A, Stan'ko
  70. English transl. in Math. USSR-Sb v.19
  71. Sibirsk. Mat. Zh. v.22 no.4 Properties of domains with nonsmooth boundary D.A. Trotsenko
  72. Ann. Acad. Sci. Fenn. Ser. A I Math. v.5 Quasisyn-metric embeddings of metric spaces P. Tukia;J. Valsala
  73. Proc. Amer. Math. Soc. v.76 Demension and meqsure J. Valsala
  74. Analyse Math. v.44 Quasimobius maps J. Valsala
  75. Trans. Amer. Math. Soc. v.299 Porous sets amd quasisymmetric maps J. Valsala
  76. Dokl. Akas. Nauk SSSR v.278 There is a homogeneous measure on any compact subset in $R^n$ A. L. Vol'berg;S.V. Konyagin
  77. English transl. in Soviet Math. Dokl. v.30
  78. Izv. Akad. Nauk SSSR Ser. Mat. v.51 On measures with the soubling condition A.L. Vol,berg;S.V. Konyagin
  79. English transl. in Math. USSR-Izv. v.30
  80. Lecture Notes in Math. v.1319 Conformal geometry and quasiregular mappings M. Vuorinen