References
- Bull. Sci. Math. v.61 no.2 Remarques sur l'extension d'un ensenble A. Appert
- Publ. Math. Orsay 223-7769. Univ. Paris XI Espaccs metriques, plongments, facteurs, These de doctorat d'Etat P. Assouad
-
C.R. Acad. Sci. Paris Ser. A
v.288
Etude d'une dimension metrique liee a la possibilite de plongments dans
$R^n$ P. Assouad - Publ. Math. Orsay 80, 7, Univ. Paris XI, Orsay Psecudodistances, facteurs et dimension metrique, Seminaire d'analyse harmonique 1979-1980 P. Assouad
-
Bull. Soc. Math. France
v.111
Plongements Lipschitziens dans
$R^n$ P. Assouad - Mem. Amer. Math. Soc. v.71 Characterizing k-dimensional universal Menger compacta M. Bestvina
- Comvergence of probability measures P. Billingsley
- Potential Anal. v.4 Sobolev inequalities on homogeneous spaces M. Biroli;U. Mosco
- Fund. Math. v.52 Eine Einbettung m-dimensionaler Mengen in einen(m+1)-dimensionalen absoluten Retrakt H.G. Bothe
-
Fund. Math.
v.56
Universalmengen bezuglich der Lage im
$E^n$ H.G. Bothe - Bull. Sci. Math. v.52 no.2 Ensembles empropres et nombrc dimensionnel G. Bouligand
- Michigan Math. J. v.19 Sets of constant distance from a planar set M. Brown
- Pacific J. Math. v.84 A characterization of dimension of topological spaces by totally bounded pseudometrics J. Bruijning
- Dept. Math. Research Reports no.9 On the existence of (d,s)-measures on closed sets, Univ. Umea P. Bylund
- Lecture Notes in Math. v.242 Analyse harmonique non-commutative sur certains espaces homogenes;Etude de certains integrales singlieres R.R. Coifman;G. Weiss
- Decompositions of manifolds R.J. Daverman
- Proc. London Math. Soc. v.20 no.3 Increasing sequences of sets and Hausdorff measure R.O. Davies
- Mat. Sb. (N.S.) v.109 no.151 Free interpolation sets for Holder classes E.M. Dyn'kin
- English trans. in Math. USSR-Sb. v.37
-
Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov.(LOMI)
v.126
Freeinterpolation by functions with derivatives in
$H^1$ E.M. Dyn'kin - English transl. in J. Siviet Math. v.27
-
Lecture Notes in Math.
v.1043
Homogeneous measures on subsets of
$R^n$ , Linear and complex analysis problem book E.M. Dyn'kin;V.P.Havin(ed.);S.V. Hruscev(ed.);N.K. Nikol'skii(ed.) - Proc. Conf. (Park City, Utah.) Demension theory, Ⅰ, Geometric topology R.D. Edwards;L.C. Glaser(ed.);T.B. Rushing(ed.)
- Lecture Nores in Math. v.438
- Topology Appl. v.24 Approximating codimension≥3 σ-compacta with locally homotopically unknotted emceddings R.D. Edwards
- Dimension theory R. Engelking
- Fractal geometry K. Falconer
- Amer. Math. Monthly v.100 A characterization of under product spaces N. Falkner
- J. Differential Geom v.17 The topology of four-dimensional manifolds M.H. Freedman
- Rev. Roumaine Math. Pures Appl. v.29 La quasi-conformite des inversions dans un espace norme M. Frunza;S. Frunza
- Trans. Amer. Math. Soc. v.194 Pseudo-boundaries and pseudo-interiors in euclidean spaces and topological manifolds R. Geoghegan;R.R. Summerhill
- Ann. Acad. Sci. Fenn. Ser. A I Math. v.7 F-harmonic measure in space S. Granlund;P. Lindqvist;O. Martio
- Proc. London Math. Soc. v.70 no.3 On demension and on the existence of sets of finite positive Husdorff measure J.D. Howroyd
- Dimension theory W. Hurewicz;H. Wallman
-
Trans. Amer. Math. Soc.
v.341
Besov spaces on closed subsets of
$R^n$ A. Johnsson - Lecture Notes in Math v.541 Haar-Mass und Hausdorff-Mass, Measure theory, Proc. Conf.(Oberwolfach, 1975) D. Kahnert;A. Bellow(ed.);D. Kolzow(ed.)
- Topology Proc. v.11 Hausdorff dimension J. Keesling
- Math. Ann. v.309 Haysdorff dimension and mean porosity P. Koskela;S. Rohde
- Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov (LOMI) v.30 Interpolation of analytic functions smooth to the boundary A.M. Ktochigov
- English transl. in J. Soviet Math. v.4
- Proc. London Math. Soc. v.17 no.3 A new theory of dimension D.G. Larman
- Ann. Statist v.1 Convergence of estimates under dimensionality restrictions L. Le Cam
- Proc. Summer Res. Inst. on Statistical Inference for Stochastic Processes(Bloomington, Indiana, 1974) v.1 On local and global properties in the theory of asymptotic normality of experiments, Stochastic processes and related topics L. Le Cam;M.L. Puri(ed.)
-
Fund. Math.
v.150
Ultrametric spaces bi-Lipschitz embeddable in
$R^n$ K. Luosto - Math. Scand. v.49 Approximating continuous maps of metric spaces into manifolds by embeddings J. Luukkainen
- Fund. Math. v.144 Minimal bi-Lipschitz embedding dimension of ultrametric spaces J. Luukkainen;H. Movahedi-Lankarani
- Ann. Acad. Sci. Fenn. Ser. A I Math. v.3 Elements of Lipschitz topology J. Luukkainen;J. Vaisala
- Adv. Math. v.33 Lipschitz functions on spaces of homogeneous type R.A. Macias;C. Segovia
- Fractals: form,chance, and dimension B.B. Mandelbrot
- Fund. Math. v.28 La dimension et la measure E. Marczewski;(E. Szpilrajn)
- Exposition. Math. v.5 Whitney cubes, p-capacity, and Minkowski content O. Martio;M. Vuorinen
- Proc. Amer. Math. Soc. v.116 On the inverse of Mane's projection H. Movahedi-Lankarani
- Proc. Amer. Math. Soc. v.123 Ultrametrics and geometric measures H. Movahedi-Lankarani;R. Wells
- Fund. Math. v.123 Remarks on characterization of dimension of separable metrizable spaces Nguyen To Nhu
- National Center for Scientific Research, Institute of Mathematics, Hanoi Some applications of the construction of Menger curve to the geometric measure theory, Essays on nonlinear analysis and optimization problems Nguyen To Nhu
- Ann. of Math. v.129 no.2 Metriques de Varnot-Caratheodory et quasiisometries des espaces symetriques de rand un P. Pansu
- Ann. of Math. v.33 no.2 Sur une propriete metrique de la dimension L. Pontrjagin;L. Schnirelmann
- Proc. Amer. Math. Soc. v.25 Note on metric dimension R.T. Prosser
- Comment. Math. Helv. v.43 Doppelverhaltnisse und quasikonforme abbildungen H. Renggli
- Introduction to piecewise-linear topology C.P. Rourke;B.J. Sanderson
- Trans. Amer. Math. Soc. v.334 Hausdorff dimension of wild fractals T.B. Rushing
-
Proc. London Math. Soc.
v.62
no.3
On the Minkowski dimension of strongly porous fractal sets in
$R^n$ A. Salli - Ann. Acad. Sci. Fenn. Ser. A I Math. v.1 The Hausdorff dimension of the branch set of a quasiregular mapping J. Sarvas
- Ultrametric calculus W.H. Schikhof
-
Rev. Mat. Iberoamericana
v.12
On the nonexistence of bilipschitz parameterizations and geometric problems about
$A_∞$ -weights S. Semmes -
Trans. Amer. Math. Soc.
v.233
Weak
$L_1$ characterizations of Poisson integrals, Green potentials, and$H^p$ spaces P. P. Sjogren - Dokl. Akad. Nauk SSSR v.201 Solution of Menger's problem in the class of compacta M.A.Stan'ko
- English transl. in Soviet Math. Dokl. v.12
-
Mat. Sb. (N.S.)
v.90
no.132
Approximation of compacta in
$E^n$ in codimension greater than two M.A, Stan'ko - English transl. in Math. USSR-Sb v.19
- Sibirsk. Mat. Zh. v.22 no.4 Properties of domains with nonsmooth boundary D.A. Trotsenko
- Ann. Acad. Sci. Fenn. Ser. A I Math. v.5 Quasisyn-metric embeddings of metric spaces P. Tukia;J. Valsala
- Proc. Amer. Math. Soc. v.76 Demension and meqsure J. Valsala
- Analyse Math. v.44 Quasimobius maps J. Valsala
- Trans. Amer. Math. Soc. v.299 Porous sets amd quasisymmetric maps J. Valsala
-
Dokl. Akas. Nauk SSSR
v.278
There is a homogeneous measure on any compact subset in
$R^n$ A. L. Vol'berg;S.V. Konyagin - English transl. in Soviet Math. Dokl. v.30
- Izv. Akad. Nauk SSSR Ser. Mat. v.51 On measures with the soubling condition A.L. Vol,berg;S.V. Konyagin
- English transl. in Math. USSR-Izv. v.30
- Lecture Notes in Math. v.1319 Conformal geometry and quasiregular mappings M. Vuorinen