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A STUDY ON D.G. NEAR-RINGS 
AND THEIR MODULES

Yong Uk Cho

1. Introduction

A near-ring is a nonempty set R with two binary operations + and 
such that (R)+) is a group(not necessarily abelian) with identity 0, 

(K广)is a semigroup and a(b + c) = ab + ac for all a, b, c in R. In 
general a near-ring R with the extra axiom Oq = 0 for all a € -R is 
said to be zero symmetric. An element d in R is called distributive 
if (a + b)d = ad ±bd for all a and b in R. Let (G, +) be a group(not 
necessarily abelian). If we set M(G) :=(/(/: G ―> G}, and 
define the sum J* + g of any two mappings £g in M(G) by the rule 
x(f + 9)= xf + xg for all X G G and the product / • p by the rule 
虬f - g)=(的)g for all X 6 G then •) forms a near-ring. Let
M(G) ：=/€ M(G) I 0/ = 0. Then (M0(G), +, •) is a zero symmetric 
near-ring. Fo호 나remainder results and definitions on near-rings, we 
refer to G. Pilz [6].

Let R be any near-ring and G an additive group. Then G is called 
아1 R—group (o호 module) if there exists a near-ring homomorphism

8 : (R, +, •) —> (Af (G), +, •)•

Such a homomorphism 0 is called a representation of R on G, we will 
write 나고at xr for x(r0) for all x € G and r € J?. A representation 0 is 
called faithful if Ker6 = 0.

The near-ring R is called a distributively generated (briefly, D.G.) 
near-ring if (R, +) = 9P < S > where S is a semigroup of distributive 
elements in R〉we denote it (R, S'). The distributive elements of Mq(G)
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are End(G\ the semigroup of all the endomorphisns of the group G. 
Here we denote that E(G) is the D.G. near-ring generated by End(G\ 
and call that E(G) is the endomorphism near-ring of the group G.A 
homomorphism

9 : (K, S) —> (T.U)

is a D.G. near-ring homomorphism if 0 is a near-ring homomorphism 
such that SO 으 U. A semigroup homomorphism 0 : S ——> U is a D.G. 
near-ring homomorphism if it is a group homomorphism from (R, +) 
to (T, +). See C. G. Lyons and J. D. P. Meldrum([3])[4]).

Let R be a near-ring and let G be an J?—group. If there exists x in 
G such that G — xR^ that is, G = {xr | r € 7?}, then G is called a 
monogenic 7?—group and the element x is called a generator of G. See 
J. D. P. Meldrum and G. Pilz([5], [6]).

2. Proper^s 꼬丄고一!*리主咨l (M쇼) 卫md (요盘分―
modules

Now we may introduce new concepts as follows: Let (R S) be a D.G. 
near-ring. Then an additive group G is called a D.G. (/?, *9)—group(or 
D.G. (B, 5)—module) if there is a near-ring homomorphism

0 : (RS) 一 (E(G\End(G))

such that SO C End{G}, Such a homomorphism is called a D.G. rep­
resentation of (1?, S). This D.G. representation is said to be faithful if 
KerO = 0.

Lemma 2.1[5]. Let (7?, S) be a D.G. near-ring. Then all R—subgr­
oups and all R—homomorphic images of a D.G. (R)S)—group are D.G. 
(R, S)~groups.

Next, let 7? be a near-ring and G an additive group. If there is a 
scalar multiplication

0: (R,S) —G

which is defined by 0(a, x) = ax such that (ab)x = a(bx) and a(x+y)= 
ax = ay for all a’b C R and for all x^y € G, Then G is called a 
B—cogroup(or comodule), see Y. U. Cho[2]. If 1? is a right near-ring, 
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then every 7?—cogroup is an J?—group for E as an 7?—group. Similar 
method of lemma 2.1 shows the following lemma:

Lemma 2.2. Let (J?, S、) be a D.G. near-ring. Then all R~subgroups 
and all R~homomorphic images of a D.G. (Rj S)—cogroup are D.G. 
(R, S)—cogroups.

Proposition 2.3. Let (R」S) be a D.G. near-ring. Then
(1) Every monogenic R—group is a D.G.㈤ S)—group.
(2) Every monogenic R—cogroup is a D.G. (R> S)—cogroup.

Proof. Let G be a monogenic K—group with x as a generator. Then 
the map(/>: r\ ——> xr is an .R—epimorphism from B to G as groups. 
We see that

G 스 R/处),

where A(x) = (0 : /) = Ker(f>. See for this notation Y. U. Cho[2]. 
From the Lemma 2.1, we obtain that G is a D.G. (_R, S)—group.

For G is a monogenic 7?—cogroup with x as a generator, the map p : 
r| ——> rx is also an J?—epimorphism from 7? to G as an cogroups. 
Thus we have that

G 은 R/Ann(x),

where Annex')二二[0 ：时=Ker^. See also for this notation Y. U. Cho[2].
By 난}e Lemma 2.2, we see that G is a D.G. (R)5)—cogroup. □

Theorem 2.4. Let (R,S) be a D.G. near-ring and (G,+) is an 
abelian group. Then

(1) If G is a, faithful D.G. (/?, 5)—group, then R is a ring.
(2) If G is a faithful D.G (R, S)—cogroupj then R is also a ring.

Proof. (1) Let x E G and 質,s € R Then, since (G, +) is abelian,

x(r + s) ~ xr + xs = xs + xr = x(s + r).

Thus we get that x(r + s) — (s + 尸)=0 for all x e G. that is, (r + 
s) —(s +『)e Ker6 = (0 ： G) = A(rr), where 0 : R ——> M{G) is 
a representation of R on G. Since G is faithful, that is, 0 is faithful,
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Ker6 = (0 ： G) = 0. Hence for all r, s G B, r + s = s + r. Consequently, 
(/?, +) is abelian. •

Next we must show that R satisfies the right distributive law. Ob­
viously, we note that for all r,rf e R and all s G <9,

Os = 0, (—r)s = —(rs) = r(—s) and (r + rf)s = rs + rfs.

Let x e G and r, s, i G R. Then the element i in U is represented by

t = &Sk + $2$2 + 63S3 + …+ 6nsny

where 8Z — 1, or —1 and G 5 for 1 < z < n. Thus, using the above 
note and (G, +) is abelian, we have the following equalities:

x(r + s)t = (xr + xs)t = {xr + :*)(&& + bg T------ F 5nsn)
=(xr+ xs)5iS! + (xr 4- xs)52S2 H------ F (xr + xs)6nsn
=51 (xr + xs)s1 + $2(e + XS)S2 T------ 卜 6n(xr + xs)sn
=5i(xrsi + xssx) + 62(xrs2 + 勿s%) T------ F 6n(xrsn + xssn)
= Sixrsi + Sitss고 + &x『S2 + 82XSS2 +-----F 6nxrsn + Snxssn
=xr6xSr + xs6isi + 工如如 + 工展2$2 H------ F xr6nsn + xs6nsn
= Xr^SiSi + 62^2 + • ・ • + ^nSn) + CS(&S고 + $2$2 + • • , ^ns7i) 
=xrt + xst = x(rt + st).

thus we obtain that x(r + s)t — (rt + st) = 0 fo호 all x E Gy namely,

(r + — (rt + st) G (0 : (구) = A(G).

Also using G is faithful, that is, A(G) = 0. Applying the beginning 
part of this proof, we see that (r 4- s)t = rt + st for all r, s.t e R, 
consequently, R satisfies the right distributivr law. Hence R becomes 
a ring.
(2) We can prove this as similar method to the proof of (1). □

As an immediate consequence of theorem 2.4, we have the following 
important corollary.
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Corollary 2.5. Let (J?, S) be an abelian D.G. near-ring. Then R 
is a ring.

Finally, we may defin은 a new concept and then characterize D.G. 
near-ring with this new concept as following.

A near-ring R is called generalized right bipotent if for all a € .R 
there exists a positive integer n such that

anR = an+lR.

There are many examples of generalized right bipotent near-rings, for 
example, Boolean near-rings.

Theorem 2.6. Let (K,S) be a generalized right bipotent D.G. 
near-ring. If there exists an element in R which is not a zero divi­
sor, then R has an identity.

Proof. Let a & R such that a is not a zero divisor then also an 
is not a zero divisor for any positive integer n. Indeed, suppose that 
q" is a zero divisor, 나len there exists a nonzero element x E R such 
that o^x = 0, that is, a(ari~1x) = 0, since a is not a zero divisor, this 
implies that an-1x = 0. Continuing this procedure we get that x = 0, 
this fact is a contradiction. Hence an is not a zero divisor.

Assume that a E R is not a zero divisor which is not zero Since R 
is generalized right bipotent, we have the following equation

anR = an+17?

for some positive integer n. This implies that ana = an+1e for some 
e in R, that is, an(a — ae) = 0 J¥om the above remark of this proof, 
since an is not a left zero divisor, we obtain that a = ae. Also, from 
the equation a(ea — a) = a(ea) — aa = (ae)a — act = aa — aa = 0, we 
get that a = ea.

Next, let r be an arbitrary element of R. From the following equa­
tion:

a(er 一厂)=a(er) — qt = (ae)r — ar = ar — ar ~ Q, 

since a is not a left zero divisor, we obtain that er = r, so that e is the 
left identity of R.
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Finally, let r be any element of R. Suppose a is not a zero divesor on 
R, Then since (/?, S') is a D,G. near-ring, there exists a positive integer 
n, we can decompose a as follows:

a = &S] + 62^2 + …+ Snsn

7 for some & V SA, = \ or —1 for 1 < z < n. Then we have the 
following equalities:

(re - r)a = (re 一 r)(5]Si + 62s2 +-----F 6nsn)
=(re -小]Si 4- (re 一 r泌2S2 T------F (re - r)6nsn
=&(re - r)si + 62(re - r)s2 H------F 6n(re 一 r)sn
=易(爬力-rsi) + 62(res2 - rs2) T------ 卜 6n(resn — rsn)
=dig - rsj + 62(rs2 一 rs2) 4------ 卜 6n(rsn - rsn)
= 0 + 0 +••• + 0 = 0.

This implies that re — r, that is, e is 나le right identity of R. Conse­
quently, e is the identity of R. □
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