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NONLINEAR SEMIGROUPS AND DIFFERENTIAL
INCLUSIONS IN PROBABILISTIC NORMED SPACES

S. S. CHANG, K. 8. Ha, Y. J. CHo,
B.S. Lee AND Y. Q. CHEN

ABsTRACT The purpose of this paper is to introduce and study
the semigroups of nonlinear contractions in probabilistic normed
spaces and to establish the Crandall-Liggett’s exponential formula
for some kind of accretive mappings 1n probabilistic normed spaces
As applhications, we utihze these results to study the Cauchy prob-
lem for a kind of differential inclusions with accertive mappings in
probabilistic normed spaces.

1. Introduction

The concept of accretive mappings is of fundamental importance in
the theory of set-valued nonlinear operators, differential equations and
partial differential equations in Banach spaces, which was introduced
independently by F. E. Browder {[3]) and T. Kato ([11]}. On the other
hand, many authors have done considerable works on semigroups of
nonlinear contractions, differential equations and evolution equations
in Banach spaces and Hilbert spaces ([1], {2], [4], {7], [8], {12], [13]).

Recently, the authors introduced the concept of accretive mappings
{[5]) and some elementary properties of accretive mappings in proba-
bilistic normed spaces have been deduced by K. S. Ha et al. ([9}).

The purpose of this paper is to introduce and study the semigroups
of nonlinear contractions in probabilistic normed spaces and to prove
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that if A is an accretive mapping in probabilistic normed spaces satis-
fying the range condition, then A generates a semigroup of nonlinear
contractions. As applications, we shall use these results to study the
Cauchy problem of solutions for a kind of differential inclusions with
accretive mappings in probabilistic normed spaces.

For the sake of convenience, we shall recall some definitions and
notations ([5], [6], [16]).

Throughout this paper, we denote by D the set of distribution func-
tions defined on R, ie., f € D if f is nondecreasing left-continuous
with supscg f(¢) = 1 and inficg f(¢) = 0.

DEFINITION 1.1. A probabilistic normed space (shortly, PN-space)
is an ordered pair (E,F), where E is a real linear space and F is a
mapping from F into D (we denote F(z) by F) satisfying the following
conditions: For all z,y € F,

(PN-1) F ()= 1_for all + > 0 :f and only if x = 0;

(PN-2) F,(0) = 0;

(PN-3) Fo.(t) = Fz(]%‘) for any a € R, a # 0

(PN-4) If Fo(t1) =1, Fy(t2) =1, then F,(t; +12) = 1.

DEFINITION 1.2. A mapping A : {0,1] x [0,1} — [0,1} is called a
t-norm if it satisfies the following conditions: For any a,b,c,d € [0,1],

(T-1) Ale,1) = g;

(T-2) A(a,b) = A(b,a);

(T-3) Afc,d) > Ala,b) forc > aand d > b;

(T-4) A(A(a,b),c) = Ala, Ab,c)).

A Menger PN-space is a triple (E,F,A), where (E,F) is a PN-
space and A is a -norm satisfying

(PN-4’) Fx.g.y(tl"l-tz) > A(Fx(tl), Fy(tg)) forallz,y € Fand ¢;,t €
R* = [0, +00).

DEFINITION 1.3 ([5]). Let (E,F,A) be a Menger PN-space.
(i) A: D(A) C E — 2F is called an accretive mapping if

Fz—y(t) > Fz—y+)\(u—v) (t)

for all z,y € D(A), u € Az, v € Ay and A > 0.
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(ii) A is called a mazimal accretive mapping if

an-—‘yo(t) > Fx—yo—{-)t(u—'vo)(t)

for all z € D(A), u € Az and A > 0, then yo € D(A4) and vy € Ayp.

(1i1) A is called a m-accretive mapping if A is accretive and I+ A is
surjective.

(iv) Ais called a strongly accretive mapping if there exists a k € (0, 1)
such that
Fo-ne—9®) 2 Fat)a—yrtu—(t)
for all z,y € D(A),u € Axz,v € Ay and X > k.
(v) A is called a dissipative mapping (mazimal dissipative, m-dissi-

pative, respectively) if —A is accretive (maximal accretive, m-accretive,
respectively).

2. Semi-inner products in Menger PN-spaces

In this section, we always assume that (F,F, A) is a Menger PN-
space.

For any A € (0, 1], we define a real nonnegative function Py : £ —
Rt as follows:

Py(z) =inf{t: Fo(t) > 1—- A} forallz € E.

From the definition of Py(z), it is easy to prove the following:

PrOPOSITION 2.1. Let (E,F, A) be a Menger PN -space with A(t, t)
>t for all t € [0,1]. Then for any X € (0,1)

(i) Pa(ox) = |a|Pr(z) foralla € R and z € E;

(ii) Pa(z + y) < Pa(z) + Pa(y) for all z,y € E;

(ii)) (Pa(z + ty)} — Px(z))/t is nondecreasing in t € (0,+00) and
T,y € E;

(iv) (Px(z) — Px(z — ty))/t is nonincreasing in t € (0,+o00) and
z,y € E.

It follows from Proposition 2.1 that the following hmits exist:

Jim (Pa(z +ty) = Pa(®))/t and_lim (Pa(e) — PA(® ~ ty))/t.
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In the sequel, we denote
[0l = Jim (Pa(z +ty) — Pa(@))/t

and
[, 9]y = lim (Pa(z) - Pa(x - ty))/t.

In what follows we give some basic properties of [z, y]f:

LEMMA 2.2. Let (E,F,A) be a Menger P N-space with A(t,t) > ¢
for all t € [0,1}]. Then we have the following :

@) [z, 95 <[z, 9]};

(i) |[z, 4}5| < Pa(y) and [z, az]f = aPy(z) for all a € R;

(i) |2, 9]y — [z, 23] < Paly - 2);

(iv) [r,9)f = —[z, 3]y = =, 9];

(v) [sx,ry]f = r[a:,y]f for all r,s > 0;

(vi) [z, y + 2 <[o, 9]} + 2, 20f amd {2,y + 2] > [2,9]5 + [z, 2] 5

(vii) [z, y + 21} > [e,y]} + [, 2]} and [2,y+ 2] < [2,9]5 + |2, 2]3;

(viii) [,y + ax]F = [2,4]T + aPa(z) for all « € R;

(ix) If z(t) : [a,b] — E is differentiable in t € (a,b) and p)(t) =
Py (z(t)), then

D¥px(t) = Jim (P(z(t + k) = Pa(z(9))/h = {=(2), A0
D gat) = lim (Py(x(0)) ~ Pa(a(t — W))/h = [x(8) 2/
(x) [z, y]f is upper semi-continuous and [z, y}; is lower semi-conti-

nuous.

Proof. Properties (i)-(v) follow easily and so the details are omitted
here.
(vi} Since

(PA(z +t(y + 2)) — Pa())/¢

< %{[P)\(m 4 2ty) — Pa(z)] + [Palz + 2t2) — Pa(z)]},

we have
fz,y +2]f <[z, 9]} + [z 2]
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Similarly, we can prove that [z,y + 2|} > [z,3]} + [z, 2]}
(vii) Since

ok = ey +2 -2 <oy + 23 + o, 2%,
from (iv), it follows that [z, —z]} = —[z, 2] and so we have
[,y + 23 2 [2.ulf + [z, 25
(viii) By (vi) and (vii}, we have
2,y + ozl <[z, 4]} + [z, 0al = [z,4]{ + aPr(z)

and
[x’y +ax]:{- 2 [x,y]f{ + [x’ax]; = [:17, y]-}{: + QPA(IB)}

respectively. Therefore, we have

[z,y +az]} = [z,y]T + aPi(z).

Similarly, we can prove that [z,y + az]y = {z,y]y + aPx(z).

(ix) Since

ID*ex() — [2(0), ' ()]}
= | lim (PA(a(t + ) = PA(z(®))/h

= lim (Py(a(t) + ha'(8)) = Pa(a(6)/l
= | lim —(Po(z(t +h) = Pa(s(®) + ha' ()
< lim [+ (Py(a(t +h) ~ 2(t) ~ ha' ()

z h) —x(t) — ha'
e R B OR0

=0,

(ix) is true.
(x) Letting z,, — z and y, — ¥, since

[xnsyn}i < %(P)\(ﬂin + tyn) — Px(zn)) for all £ > 0,

81
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we have )
B [, al} < (Pa( + ) - Pr(a).

Letting ¢ — 0%, it follows that lim,, o [Zn, ¥n]¥ < {z,¥]7, which means
that [z,y]Y is upper semi-continuous.

Similarly, we can prove that [z,y]} is lower semi-continuous. This
completes the proof.

Next, we define a mapping 35 : E — 2% (E* is the dual space of
E) by

@) = {fa € B*: fa(z) = Pa(z), [z, 95 < aly) < [o.9l}, y € B}

Now we claim that for any = € E, j,(x) # 8. In fact, for any yo € F,
we define fx(ayo) = afz,yo]f for all @ € R.

(2) If & > 0, then fa{ayo) = [z, a%ol3;

{b) ¥ a < 0, then

a[cc, yO}: - —;Qi[ﬁt, y0}+ = —[(E, IaIyO]i
= [z, ~lelyoly = Iz, avolx
< [‘Tao‘yol:\k'

Therefore, we have fy(ayo) < [z, ayo)} for all « € R. By (v) and (vi)
of Lemma 2.2, [z,y]} is subadditive in y € E. By using the Hahn-
Banach Theorem ([15]), there exists a linear functional fr:E—-R
such that fx(ayo) = fr(aye) and —lz, 4]} < @) < [z, y]¥ for all
ye B ie,

2,915 < fay) < [z, 91}
Especially, we have fx(z) = (x,zlf = Pi(x).

The continmty of fy follows from | fx(z)| < {lz, y]¥| < Pi(y) imme-
diately. Therefore, we know fy € 75(x). This completes the proof.

Moreover, we can also prove that jx(z) is convex. Hence, by the
Banach-Alaoglu Theorem, we have the following :
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PROPOSITION 2.3. For each x € F and X € (0.1], sa(z) is a
nonempty convex weak" compact subset of E*.

In view of the above argument and Proposition 2.3, we have the
following :

PROPOSITION 2.4. [z,y]} = max{fa(y) : fr € jr(z)} and

[z, 9]y = min{fx(y) : fr € in(z)}.

DErINITION 2.1. (i) (z,y)] = Pi(2) - [z,y]] is called the upper
semi-inner product with respect to A € (0,1],

(ii) (z,9)y = Pa(z) - [z,y}} is called the lower semi-inner product
with respect to A € (0, 1].
For some properties of the semi-inner products, refer to [14].

DEFINITION 2.2. The mapping Sy : E — 27 defined by
Sa(z)={P\(z)-fa:fa€si(z)} forallzc F

is called the duality mepping with respect to A € (0, 1].
It follows from Lemma 2.2 that the following corollary holds:

COROLLARY 2.5. (i) (z,y)} < (z,9)¥;

(it) iz, y)F| < Pa(z) - Pa(y) and (z,az)f < aP¥(z) for all a € R;

(iif) |{z, )} — (z,2)X] < Pa(z) - Paly — 2);

(i) (z,9)] = (-2, -9)5 = —(-=,¥)5;

(v) (sz,7y)f = s - (z,y)F forall r,s > 0;

(i) {2,y +2)] < (@&, )i +(2,2)F and (z,y+2)5 > (2,9)5 +(2 2)3

(vii) (z,y+2)5 > (z,9)} +(z,2); and (z,y+2); < (2, 9)5 +(z,2)};

(viil) (z,y+ ez)f = (z,9)F + aP2(z) for all a € R;

(ix) If (1) : |a,b] — E is differentiable in t € {a,b) and px(t) =
PZ(z(t)), then

D¥pa(t) = 2(2(t),2'(t))} and D™a(t) = 2(2(t), 7 ()5

(x) (z,y)T is upper semi-continuous and (z,y), is lower semi-con-
tinuous.
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3. Accretive mappings and nonlinear semigroups in PN-
spaces

In this section, we always assume that (E£,F,A) is a complete
Menger PN-space with A(t,¢) > ¢ for all ¢ € [0, 1].

LemMA 3.1. Let A : D(A) C E — 2F be a mapping. Then the
following conclusions are equivalent:

(i) A is accretive;

(i) Pa(x —y) < Pa(z —y + e(u ~ v)) for all z,y € D(A), u € Az,
v € Ay and forall e > 0, X € (0,1}];

(ii) {x — y,u —v]f > 0 for all z,y € D(A), v € Az, v € Ay and
X € (0,1].

Proof. (i) <= (ii). If A is accretive, then
Fz—-y(t) > Fz—y+e(1¢—v) (ﬂ

for all z,y € D(A), v € Az, v € Ay and € > 0. Besides, for given
z,y € D(A), u € Az, v € Ay and € > 0, letting

Pz —y+elu—v)) = inf{¢ : Fx—y+e(u—u}(t) >1- A}
= nlirrgo{tn P Py yre(u-v)(tn) > 1~ A},

then we have F;_,(t,) >1—Aforall n > 1 and so
Pz —y) =inf{t : F,_,(t) > 1 -2} < lim ¢,,

which implies that the conclusion (i) is true.

Conversely, suppose that (ii) is true, but the conclusion (i) is not
true. Then there exist xo,y9 € D(A), €9 > 0, up € Az, vo € Ay and
to > 0 such taht

Fﬂ:o—yo (t()) < Fxo-*‘yo-fco(uo*vo) (to).

Therefore, there exists Ag € (0, 1] such that Fyo_y,(to) =1 — Ag. This
implies that

Py (20 ~ yo) = inf{t: Froyal(t) > 1 - ’\0} = lo-
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Since on—yo+€o(uo-vo}(t0) > 1 — Ag and Fxo_y0+€0(uu_v0}(t0) is left
continuous, there exists ég > 0 such that

Flo—yo-l-ﬁo(ua—vo)(to —60) > 1 - Ao.

Hence we have

Py (xo — yo + €olug — vo)) < tg ~ 8p < to < Pro(zo — %0),

which is a contradiction
(ii) <= (iii) By Proposition 2.1 (iii) and the definition of [-,-]}, it
is obvious that the conclusions are true. This completes the proof.

LEMMA 3.2. Let A:D(A) C E — 2F be an accretive mapping and
Je= (I +€A)7! for all e > 0, then

() Pa(Jex — Jey) < Pa(z — y) and Fj o j.4() = Fo_y(t) for ail
t >0, A€(0,1], and z,y € R(I + €A), the range of I + €A;

(it) Pn(JI'z — z) < n-Py\(Jex —z) for all X € (0,1], an integer n > 0
and z € R((I + eA)"), and

Fyng_o(t) > FJJ_x(;tL—) for all t > 0 and = € R({ + €A)"™);

(i) If z, € R(I + €A) and =, — zo € D(A) NR{I + €A), then

lim P\(Jex, —z,) <e- g}lf Pi(u) for all X € (0,1]
uwEAxo

s

and .
lim Fjy . _» (t)> sup Fu(z) for all t > 0.

J—o0 uEAzQ

Proof. (i) is an immediate consequence of Lemma 3.1 and the ac-
cretivity of A.

(ii) can be obtained from (i) immediately

Next, we prove (iii). For any given u € Axg, letting w = zqg + €u,
then we have

zo= (I +eA) 'w=Jw
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and
Pi(Jez; — z,) < Pa(Jez; — Jew) + Po(Jew — ;).

Hence it follows that
_hT‘Il P,\(Je:z_, - LL‘J) < En- (P,\(:L‘j - ’l.U) + PA(iEU - .’EJ))
j—oa 3—+00
< lim Py(z; —w)
j—o0
Tim (Py(z, — o) + Pa(zo — w))
j—oo

< Py(—eu) = ePr(u).

IA

Therefore, by the arbitrariness of u € Azg, we have
— Vel .
31520 Py(Jexj —z,) < e ué&fzop‘\(u)
On the other hand, since

FJca:_, -z, (t) > A(FJCx,—Jew(t - g)r FJ'ew-—:c, (2))

2
> APz, -ult = ), Froms, (D)

and n n
Fx,—w(t - "2’) 2 A(Fm,-—xo(g), F€U(t - 77))

for all < t, we have

Fr.zy-2,(t) 2 A(Feult = 1), Faoms,(3))

and so .
li_m FJQQTJ*I;; (t) Z Fu(%n)

oo

Since F,(t) is left-continuous, letting n — 0%, we have

lihm FJga:J-—::J(t) 2z Fu(z)!

J—oo
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which implies that

. t
.l'l_rn_ FJez‘)“x’(t) Z Sup Fu(z)'

=0 uCAzg

This completes the proof.

We are now in a position to consider the Cauchy problem of the
following differential inclusion with an accretive mapping A:

{u’(t) € —Au(t), t >0,

(E3.1) u(0) = ug € D(A).

DEFINITION 3.1. A function u(-) € C(R*,E) is called a strong so-
lution of (E3.1) if it satisfies the following conditions :

TNy 44 ) P

) a(u.) =g,

(ii) There exists y € E such that

Fu(t)—u(s)(k) > F(t__s)y(k) forall k >0and ¢,s ¢ R

(In this case, we also say u(-) to be Lipschitz continuous);
(iit) The derivative u'(t) of u(-) exists and satisfies

u'(t) € —Au(t) for almost all ¢ € (0, +c0).

Thus, we have the following:

THEOREM 3.3. Let (E,F,A) be a complete Menger PN -space with
A(t,t) > t for all t € [0,1] and A : D{A) C E — 2% be an accretive
mapping. Then (E3.1} has at most one strong solution.

Proof. Let u{-} and »(-) be two strong solutions of (E3.1) and denote
oalt) = Pa(u(t) — v(t)) for all A € (0,1]. Then, by Lemma 2.2 (ix), we
have

Dpat) = [u(t) — v(8), w'(8) - v/ ()]5-
Therefore, there exist w(t) € Au(t) and z(t) € Auv(t) such that

u'(t) = —w(t), v'(t) = ~z(t) for almost all ¢ € (0, +00)
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and sc we have

D7 at) = [u(t) — v(t), (w(t) — 2())]x

= —[u(t) — v(t), w(t) — 2(8)]}
<0.

Therefore, we have
Py(u(t) — v(t)) < Py{u{0) — v(0)) =0 for all A € (0,1].

If u(to) — v(to) # 0 for some tp € R*, then there exists kp > 0 such
that
Fiu(to)—v(to) (ko) < 1.

Letting Fu(to)—-v(to)(k()) =1 — Mg, then Ag € (0, 1] and so
Py, (u(to) — v(to)) = inf{k : Fu(to)—-v(to) (k) >1—2Xo} 2k

0 >
which contradicts Py, (u(tg) — v(fp)) = 0. This inplies that
for all t € R*. This completes the proof.

5

DEFINITION 3.2. Let (F,F,A) be a complete Menger PN-space
and C be a closed subset of E. A family of operators, {T'(t): C — E :
t > 0}, is called a semigroup of nonlinear contractions if it satisfies the
following conditions :

(i) TO)z =z for all z € C;

(i) TWT(s) =Tt +s) for all £, 5 > 0;

(iii) The mapping t — T'(t)z is continuous for any z € C;

(V) Frays—1yy(k) > Fp_y(k) for all z,y € C, £ > 0 and & > 0.

THEOREM 3.4. Let A : D(A) C E — 2F be an accretive mapping
satisfying the following conditions:

(1 + €A)(D(A)) D D(A), the closure of D{A), for all € > (.
Then for any x € D(A), the following limit exists
T(t)z = lim (I + eA)~ Gz for all ¢ > 0,

where [%] is the largest integer which does not exceed . Moreover,
{T(t) : t > 0} is a semigroup of nonlinear contractions.

In order to prove Theorem 3.4, we need the following:
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LEMMA 3.5. Let A:D(A) C E — 2F be an accretive mapping and
D(A) c (I +¢€A)(D(A)) for all ¢ > 0. Then

Fipo-spe(t) > sup Fy(t- ((me—np)? + me® +np®)~7)
uCAz

for all x € D(A), €, u > 0 and m, n are nonnegative integers.

Proof. We first prove that for any z € D(A), ¢, ¢ > 0 and X € (0,1],
(31) PPz~ J57) < {(me—np)? +me* + mp?}E - inf P(u),
where m, n are nonnegative integers.

For each z € D{A), ¢, x> 0 and X € (0, 1], let

Pon = Py(J"z — Jiz), mn=0,1,2,---
By (ii) and (1ii) of Lemma 3.2, we have
Pro < me- uIGIIL Pi(u), m=0,1,2,-
Porn <np- uien/iix Py(u), n=0,1,2,---
These mean that (3.1) holds for n = 0 or m = 0.

Now we suppose that (3.1) holds for a couple of integers (m—1,n},
(m,n —1). For x € D{J.) and y € D(J,), setting é§ =

, We can
e+/4
easily check
Js( £ opy— Jez) = Jex,
€+ u €t p
Js(——y+ — Ty =J
Ner T e a T
Therefore, we have
Pyn
= Py (J. ~Jm"19:—J#-J;‘”‘:r)
_ m—1 € m
P’\(Ja{‘?(e J€ 11‘3+—6+ Jx)
— Je J”‘ 1 _Jn
e+P(€+P«I + + m))

H -1 m n—1 [ n
<P Jn —J"r - J -—Jx
_’\(E'}‘F'e +e+#£x f+ﬂ"‘$ 6+].LM)

€ m n— [ m=—1 n
< P b P s — Jhx),
T e+ AJe'e J )+E+F£ I e px)
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i.e.,
€ H
Pm < Pmn—+

Pm—-l,n

and thus we have

Pm,n
= . _f_ m {(me — np)? + 2p(me — np) + me® + np?}t - uienfga: Py(u)
+ o lme = nu)? = 2e(me = np) +-me 4 my?} - inf P(u)
= {e + p [(me — nu)? + 2p(me — np) + me? + nps’]
L _ 2 _ _ 2 2 % s
+ - n u[(me np)* — 2e(me — np) + me® + np’l} uléljm Py(u)

= {(me —np)? + me® + nu?}i . inf Py(u).
wEAr

Therefore, the conclusion of (3.1) is proved.
Now, suppose that the conclusion of Lemma 3.5 is not true. There
exist xg, mp, ng, €0, po and tg > 0 such that

FJ;:;%o—J:gxo (tO) < sup Fyu(to-{(moeo — nOﬂ'O)2 + mﬁfg + nO“g}_é)‘

uEAzp

Therefore, there exists uy € Azp such that
1
Fiymor,go9z,(to) < Fuolto - {(moeo — nopo)” +moej + nop} ~2).
Letting Fymo,,_ ., (to) =1 — Ao, then Jg € (0,1]. It is obvious that
P,\D(J::(]xo -— J;g’xo) = inf{t : FJ:;Oxow-J,'.'gmg(t) >1- )\0} >t

and
Pyo(ug) = inf{t : F,,(¥) > 1 — Ao}

< to - {(moeo — nopo)? + moek + nopd} .
Hence we have

m n ¢ M
Pao(Jin o — J0x0) > {(moeo — nopo)” +moeg +nopp}? - Jof P (u),

which contradicts (3.1). This completes the proof.
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Proof of Theorem 3.4. For each z € D(A), by Lemma 3.5, we have

Fan, g, (92 s Bl (e [ + 10+ (] wfE

Since
«[1e—uluf+[1e?+§yp%%s{&+uf+@+ﬂnﬁ,
1t follows that

Fon, i 02 sup Fulk: {(e+p)? + (e+ mt} 2

e T— uCAz

Letting €, & — 07, we have

h1%+ FJ _ (k) =1forall k > 0.
€

This implies that {J?]:c} is a Cauchy sequence in E. Hence the limit

_ (€],
(3.2) T(t)z = €1_1—’1{1)1+ Jeo'x

exists. Since JE%] is contractive, for each z € D(A) the limit in (3.2)
still exists and T'(t) is contractive on D(A) for all ¢ > 0.
Next, let ¢,s > 0 and = € D(A). Then, by Lemma 3.5, we have

Fasn,_n (02 sup F(k-A([C]-e= (-7 + -+ (227,

J

Since
t t
Gl e~ P+ - @+ @ < (e~ sl + P+ (2 +3) o
for any u € Az and k > 0 we have

Fuy, o (B)2 sup Bk {(t = s+ + (¢ +5)e} %)
(33) e T u€Azx

> Fu(k - {(It —s|+€)> + (t+3)- e} )
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and

Fr)z-T(s)={k)

n L]
> w — —
2 A et Fpt, iy (= 3))
> A(F g (% ) A(F 12 (k——"zn) F s (Iy))
= T(t)z—J' ¢z e _gleiy 377 gl T(e)2 3770

where 0 < n < k. Since

: n,
Pt 4 FT(t):r: S ( ) 1 and 1_1.m+ FJE ]x—T(S)x(S) =1,

letting ¢ — 07, we have

(3.4) o JAYSRT (% 27,

(o) *’H‘t)w—T(s):r( :f{l; Jiklz-.)'{%]x\ 3

for all 0 < 7 < k and k > 0. By (3.3) and the left-continuity of F,(-),
we have

(35 Im P e (k= 2> R((k— 2t -5

e—ot JetE—det

for all n € (0,k) and u € Az. By (3.4) and (3.5}, we have

2n _
Fr)o—1(s)=(k) > Fu((k - ?) ™Y

for all 5 € (0,%) and u € Az. Letting n — 0%, by the left-continuity of
F.(-), we have

Frtyz-1(s)=(k) > F, ( I) for all © € Azx.

This shows that T'(t)z is a Lipschitz continuous function in t for any
z € D(A). Since T'(t) is contractive, T(t)z is a continuous function in
t for any z € D(A).
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Finally, letting x € D(A} and ¢,s > 0, then

F e an (02 s Pl (FE5] = (14 2) o
FEET @ (4 2D

> sup Fu(k - {(3€)% + 2(t + s)e} %)
ucAx

for all £ > 0. Letting € — 0", we have
im F s g S, (k) =1 for all £ > 0,

et J‘mJ‘

which implies that T(t+s)z = T(t)T'(s)z for all £, s > 0 and = € D(A).
Therefore, since T'(¢) 1s a contraction, it follows that

T(t+s)r=T(t)-T(s)x for all z € D(A) and t,s > 0.
This completes the proof.

REMARK. Theorem 3.4 is a generalization of the Crandall-Liggett’s
exponential formula for some kind of accretive mappings in Banach
spaces to probabilistic normed spaces.

THEOREM 3.5. Let A - E — 2F be an accretive mapping satisfying
the following conditions :

(i) D(A) C R(I + €A) for all ¢ > 0;

(it) If z,, € D(A), yn € Az, Tp — = and Yy, — y as n — 00, then
z € D(A) and y € Azx.

Let {T(t) : t > 0} be the semigroups generated by A as given in
Theorem 3.4. If x € D(A) and u(t) = T'(t)z is strongly differentiable

for almost all t > 0, then u(t) is the unique strong solution of the
Cauchy problem (E3.1):

To prove Theorem 3.5, we need the following:

LEMMA 3.6. Let A : D(A) C E — 2F be an accretive mapping
satisfying D{A) C R(I + €A) for all € > 0 and {T'(t) : t > 0} be the
semigroup given in Theorem 3.4. If z € D(A), then for any xo € D(A4),
yo € Azxp, t > 0 and X € (0, 1],

P,\ (T(t):r - .’L‘g) S P,\(:'C — .’)30) + ‘/OI[T(S)I — X0, —yo]fds.



94 8. S. Chang, K. S. Ha, Y. J. Cho, B. S. Lee and Y Q. Chen

Proof. Let x € D(A), zg € D(A) and yo € Azg. For any € > 0 and
positive integer N, we have

e Y JVr ~JN1z) € — ANz

Since A is accretive, by Lemma 3.1, we have

1 -

(3 N [JfNa: — xg, ;(JfN:c—ng"lx) +yo])\
’ 1

- ~[J€N:c -z, -e-(J;N'I:c — J,fv:c) - yolj{ < Q.

By Lemma 2.2 (vi), we have
TNz = z0, =Nz~ I¥12) + yol;
1 —1 \i— ~
> (7 20, 2(JNe ~ IN D)5 + 1787 — 20,00y
In view of Proposition 2.1 (iv), we have
Ve — 20, 2(JNz — JN1z) + yoly
1 -
B 2 (BINz ~20) - BNz ~ 20 - (J¥z - I 2)))
+[INz — 20, %0]5.-
By (3.6) and (3.7), we have
(38)  Pa(Jz —w0) < Pa(JY e — zo) + €[S T — 0, ~0l} -
Adding up the inequalities in (3.8) from N =1 to N = n, we have

(3.9) Py(JPz —x0) < Pa(z ~ o) + Y €[J¥z — zo, —w0l}-
N=1

Letting ¢ > 0 and n = [%], then (3.9) can be written as follows:

(&l U+ (s
PA(JG‘ (B*:E()) SPA{$—$0)+f [ €

€

T ~ To, —¥o]} ds.
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Since I[Ji%}:n — 20, —yo|3 | < Pxa(yo), letting € — 0*, by the Lebesgue’s
convergence theorem, it follows from the upper semi-continuity of [+, |
that

t X
Pi(T(t)x — z0) < Pr(z — m0) + [ tim | ey, To, —Yo|3 ds
0 e—{)

t
_<__ P,\(:L' - .’E()) —l—/ [T(s):c — Xo, ~—y0}}tds.
0
This completes the proof.
Proof of Theorem 8.5. For z € D(A), if T(t)r has a derivative
LT (t)zli=t, =y at t =t > 0, then, by Lemma 3.6, we have
Py(T(to + h)z — zo) <Pa(T(tp)x — x0)

h
+ / [T(to + 3)93 — g, —yg]ids
0

for all A > 0. Dividing by h > 0 on both sides and letting h — 0%,
from Lemma 2.2 (ix), we have

[T(to)z — 0,413 < [T(to) — zo, —ol¥ -
it follows from Lemma 2.2 {vii) that
[T(to)z — xo,y + Yoy
< [T(to)z — zo,y}Y + [T(ta)z — w0, yol
= [T(to)z — 0, 9]} — [T(to)= — zo, —0l}
<.

By the condition (i), for any € € (0,%o), there exist z. € D(A) and
ye € Az, such that

(3.10)

e + ee = Tito - .
Taking zg = Z, Yo = ye = € (T(tgp — €)z — z.) in (3.10), we have
0> [T(to)z — ze, y + € H{T(to — €)z ~ x5
= [T(to)x — e,y + € 1 (T(to — )z — T(to)x) + € (T (te)z — ze)ly
= e 'P\(T{to)x — =)
+{T(t0)x — ze,y + € HT(to — €)z — T(to)z)]y
> e 1P\(T(tg)r — ) — Pa(y + ¢ (T {to — €)= — T(to)x)),
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ie.,

Py(T(to)x — z¢) < Pa(ey + (T(ip — €)x — T(tp)z)) for all X € (G, 1].
Therefore, we must have

(3.11) Frtg)z—z. (k) 2 FeyyT(to—e)z—T(to)s (k) for all k >0
and so z — T(tg)r as ¢ — 0F. Since
Fyiy (k)
(3.12) = Fy—e-1(T(to)o~T(to—e)x)+e~ 1 (T(t0)z—x.) (K)
k k
2 A(Fy—'f"l(T(to)$~T(to—€)z)(§): Fe—l(T(to)x—ze)(‘i));

from (3.11), (3.12) and lim,_g+ €} (T(to)x — T(to — €)z} = y, it follows
that

k
Fyiy (k) > Fy—c"(T(to)x—T(to—e)x)<§) —lase— 0%

and so y. — —y as € — 0. By the condition (ii), we have T{ty)z €
D(A) and y € —AT(ty)z. This completes the proof.

4. An open question

In the end of this paper, we suggest the following open question :

Let (E, F,A) be a complete Menger PN-space and A : E — 2F be
a continuous accretive mapping. Then is A a m-accretive mapping ?
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