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모HE "—VERSION OF THE FINITE 
ELEMENT METHOD UNDER

NUMERICAL QUADRATURE RULES

Ik-Sung Kim

Abstract, we consider 나le /ip—version to solve non-constant co­

efficients elliptic equations —div(aVu) — / with Dirichlet bound­

ary conditions on a bounded polygonal domain Q in R2 In [6], 

M Suri obtained an optimal error-estimate for the /ip—version. 

||u - 祚II] Q < 베This optimal result

follows under the assumption that all integrations are performed 

exactly In practice, the integrals are seldom computed exactly. 

The numerical quadrature rule scheme is needed to compute the 

integrals in the variational formulation of 나le discrete problem In 

this paper we consider a family Gp = {Zm} of numerical quadrature 

rules satisfying certain properties, which can be used for calculat­

ing the integrals Under the numerical quadrature rules we will give 

the variational form of our non-constant coefficients elliptic problem 

and derive an error estimate of llu — IL、

1. Introduction

The finite element method is a particular kind of Ritz-Galerkin pro­
cedure in which the approximating finite-dimensional subspaces are 
composed of piecewise polynomials defined on a partition of the given 
domain. The convergence is obtained by increasing the dimension. of 
these subspaces in some manner. There are three versions of the fi­
nite element method. The /z-version is the traditional approach ob­
tained by fixing the degree p of the piecewise polynomials at some 
value (usually p = 1,2,3) and refining the mesh in order to achieve 
convergence. The p-version, in contrast, fixes the mesh and achieves
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the accuracy by increasing the degree p uniformly or selectively. The 
/ip—version- is the combination of both.

In this paper, to solve non-constant coefficients elliptic equations 
with Dirichlet boundary conditions on a bounded polygonal domain 
Q in J?2 we consider the hp—version with a quasi-uniform mesh and 
uniform p. In [6], I. Babuska and M. Suri already obtained the following 
optimal estimate for the version:

(Ll) 诚II项

< 0厂9_1)邱识(叩一叫|씨"向 for all u G 码(Q), a > 1,

where C is independent of u, h、and p [but depends on Q and a].
The above optimal result follows under the assumption that all in­

tegrations are performed exactly. In practice, the integrals are seldom 
computed exactly. The Jiximerical quadrature rule scheme is needed 
to compute the integrals in the variational formulation of the discrete 
problem. Thus we first consider a family Gp = (Zm} of numerical 
quadrature rules satisfying certain properties, which can be used for 
calculating the integrals in the stiffness matrix of (2.17). Then, un­
der the numerical quadrature rules we will give the variational form 
of our non-constant coefficients elliptic problem and derive an error 
estimate of ||w 一 赤即】q where is an approximation satisfying (3.6). 
We also analyze the cases in which the overintegration may improve 
the accuracy of the approximation to allow for optimal results.

2. Preliminaries

Let Q be a closed and bounded polygonal domain in R? with the 
boundaryLet M — {3"}, h > 0 be a quasi-uniform, regular family 
of meshes Jh = (Q^} defined on Q, where is a closed quadrilateral, 
and

(2.1) "秒家 diam(Qh) = h for all Q气 Jh e 人4・

Further we assume that for each 이% £ 砂 there exists an invertible 
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mapping 建 ：Q —> QR with the following correspondence:

(2.2) / e f八一g =建(£) €(此

(2.3) t € C/P(Q) <一U = to (7^)-1 e t7P(Qfc),

where Q denotes the reference elements Z2 = [—1,1]2 in P?,
(2.4) %(0)

•스-
=(t : t is a polynomial of degree < p in each variable on Q } 

and
(2.5) Up(盐、)=[t •. 2 = t。t£ e Up0)、k

We now consider the following model problem of elliptic equations : 
Find u G //q(Q), such that

(2.6) —div(aVu) = / in. Q C B2,
where two functions a and f satisfy a compatibflity^conditioirl^^nsure 
a solution exists, and
(2.7) JTq(Q) — (w € HX(Q) : u vanishes on r}.
For the sake of simplicity, we assume that
(2.8) 0 < Ai < a(x) < A2 for all x e Q,and
(2.9) f e L2(Q).
In addition, we also assume that there exists a constant M > 1 such 
that
(210) 꺄llm,8金 , li(建)T|lm,8臥〔4 for Q<m<M,

(2-11) ||^llm,8,C，11(段)J4 for 0 < m < M - 1, 

where 肆 and (<*) denote the Jacobians of TE and ([가) 1 respec­
tively.
Then, as seen in [8,theorem 3.1.2], we obtain the following correspon­
dence: For any a G [1, oo], 0 < m < M,

(2.12) t G <一= (疑)T £

with norm equivalence

(2-13) W"Y)||t|lm，5 M II히Im,顼 < 5"糾|t|lm，5
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with the subscript a omitted when a = 2. Namely, we have

(2.14) 即"叫|編战 < II히静 < 5(mT)||t|lm，曲

Let us define
(2.15) S：(Q) = {ue : y。(7*) e UP(Q) for all QR G Jh},
where uQh denotes the restriction of iz G H1(Q) to €【7气 and 

(2-16) 明)(Q)=舟(Q)函姑(Q).
Then, using the Tzp—version of the finite element method with the mesh 
Jh = {Q£} we obtain the following discrete variational form of (2.6):

Find e S*o(Q) satisfying

(2-17) B(也也 = (f, 祢)盘 for all 祐 J앞 °(Q),
where

(2.18) B(u,v) = I aVn ■ V?; dx,
Jq

the usual inner product
(2.19) (/, v)n = [ fv dx.

Jq

Let us now give some approximation results which will be used later.

LEMMA 2.1. For each integer I > 0, there exists a sequence of pro­
jections

Up : Hl(Q) —> Up(Q), p = 1,2,3, - - - such that

(2.20) H笋p = vp for all vp G〔爲(C),

(221) 牌 一 叫헤孫 ¥ 力厂(~)|同扁 for all u G Hr(Q) 
with 0 < s < I < r.

Proof. See [ 9, Lemma 3.1].
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Lemma 2.2. Suppose that - Q ——> is an invertible affine
mapping. Then for any u € o > 0 we have

(2.22) mJ II螭 — 에濁 < Ch^\\u^\\
從 Up(Q) 히' 心上

where 卩 = min(p, a — 1) and C is independent of h, p and u.

Proof. The proof is given in [6].

Lemma 2.3. For each u e H"(Q) and QR E Jh there exists a 
sequence 考 G Up(i2^),p = 1,2, ••- such that for any 0 <r < a

(2.23)
域 - 咨5 M 顷"〔I for m 아% G 宀J" 7 a e > K it ftc It

where 卩，= min(p, a — 1) and C is independent of h, p and u.

Proof. See [6, Lemma 4.5].

Let u G Ha(Q),cr > 1 be the solution of (2.6) and 나圮 /ip—version 
finite element solution of (2.17). Then, as seen in [6] we have an esti­
mate

(2-24) ||U 一 潮Lg < 6mm(叩—l)p*T)||끼|g,

where C is independent of u, h and p.

3. The hp—version under numerical quadrature rules

We consider numerical quadrature rules Im defined on the reference 
element Q by

n(m)
(3.1) l© = £ wr f(殍)~ L 施)曲
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where m is a positive integer. Let Gp = {Im} be a family of quad- 
rature rules with respect to £7p(Q), p = 1,2,3, • • •, satisfying the 
following properties: For each Im € Gp,

(Kl)
(K2)

(K3)

i = 1, ••- ,n(m). 
f e。面).

w^1 > 0 and 尊 € Q for 
人 2

Im(f )<^||/||0^ for all
2 〜'2 —■ ■，〜、

이仇静 < Im(/ ) for all ■性 Up(Q),

where Up(fl) = (斉=:f e C7p(Q) } C UP(Q,).

L”(亍)=[f(x)dx for all 亍匕1就切0), 
Jq 〜

where d(m) > d(p) > 0.
We also get a family of numerical quadratu호e rules

with respect to S*(Q), defined by

(K4)

j=i

and 
(3-3)

n(m) n(m)
(3.2) 玖(/燃)=£就血四)=£布扌及翎、心皿。建、)啰、)

J=1

=Ln(就

In particular, one may be interested in Gauss-Legendre(G-L) quad­
rature rules. Let Lq denote the cross-products of q—point G-L rules 
along the xi and 说 axes on Q = I x I, given by

스 q q _ 八 八
Lq(f) = E £ 理 痂; f(젹) for all f e Z，2(C),

1=1 J=1
where = (辭, /;) G Q = 7 x Z with 나le wei많its 疝? and wj.

We consider a family of G-L quadrature rules with respect
to C7p(Q) such that l(p) = p+1. Then, {如}财)satisfy the properties 
(Kl) — (K4). In fact, when q > p+1 Lg(/) is exact for all f £ Ud(q)(Q) 
with d(q) > 2p +1 > 0, so that (K2) and (K3) hold with C\ = & = L

Now, we denote by DF 나le 2x2 Jacobian matrix of F : R? — R2 > 
and define two discrete inner products
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(3.4) (%0)m,皿=玲,燃((加)忑)=Ln(及(U。)恐)On Qfc £。气

(3.5) (")m,Q= E (叩％,就。【19.
Q既""

Then, under numerical quadrature rules Im in Gp we obtain the 
following actual problem of (2.17): Find 赤;€ such that

(3-6) Enq(祁，祐)=for all 祢 G <0(Q),

whe 호 e 
(3-7) 岛顽（路祁）=E ▽祐• ▽虐

=£ Ln(破(▽部而F) (▽收函」j) 

아 5

=E 3冲票,笋m，

—J dxz ox^ m)u
Q0尸1 3=1 3

and a%3 are the entries of the matrix

聽 (建)7)0)(建)T) . 
-fjf ~- ---

Here, a ,aZJ y and denote the restrictions a^h f (㈤折⑴,(祢)qa 
and(祐)淨 respectively.

Let us now derive an estimate of the error \\u — f°r the 
/ip—version under numerical quadrature rules /m. In fact, ||w 一 祐脩 

depends on two separate terms. The first dependence is on the error 
||w 一 祁II】q given in (2.24). Next, the smoothness of a has influence 
upon the error. We will start with the following Lemma.

Lemma 3.1. Let u be the exact solution of (2.6) and that of 
(217). Let Up be an approximate solution of u which satisfies a discrete 
variational form (3.6). Then there exists a constant C independent of 
m such that
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(3.8) ||3—砌I 睥

< C inf {llu —
~ 。詐 S*q(Q) 니'

+ sup
初詐％o(Q)

|B（诚，遊）一」Bm,Q（祐，或）I 
iwG }•酒I噸

Proof. Let 祁 be an arbitrary element in S；o(Q)・ Then we have
(3.9) II" —항ILL 阮一酒1项 +睥 —枷顷

From the ellipticity of ,)? f°r a constant Ci > 0

(3.10) (기摭-潮匕 < 玖顽(诺-洛祢-甫

= |岛財綽诺-祐) - (£祁-항)I

—!-Sm；n(Vp, Vp — Up) - B(«p, Vp ―赤*)

Hence, taking the infimum with respect to v萼 G S*q(Q) we have

(3.11)也一祁Dm
<C inf 邛…시 I I 回吧普FIE" 脸祁-也I
f点。(，见 이 ・q+ 睥-畛临 }•

The Lemma follows from taking wg = 祁 一 하 C S*,o(Q)・

The following Lemma will be used later.

Lemma 3.2. Let up, wp € L^>(Q) and f e Loo(Q). Then, for all 
vq C £7q(Q), fr G Ur(Q) with 0 < q < p and r = d(m) — p — q > 0 
we have

(3J2) I (/ 있? Bp)金 — (f upy 口丿卩烏1

< C {ll£』o,8司I”卩 - 네Io,a + 11/ — £』o,8,f》lh니k)G } liwpllo,n >
where C is independent of p, q and m.
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Proof. For any fr G (7r(Q) we have

(3.13) 1(歹頌办帰-啊"机盘1
< I (/ &P，紡?)◎ - (frUp, Wp)„ I + I (frUp, Wp)S — (£布,每)”盘 | 

+ I (frUp, %)m,盆 ~ (f UP> wP)m,Q I -
Thank to (K4),

(3.14) (£福每帰-(云福每)mQ = 0 for any vq € Ug(Q).

Hence,

(3-15)丨(鬲頌每后-(£每,每)赤》丨

— I (J3p %)G ~ (£』切 WP)H I + I 힝。p)m,G — (J淑知 I*
By the Schwarz inequality we obtain

(3.16) I (JrUp.Wp)^ 一 (話I
< (两鬲-祈),无(爲-初))*(4祐,疝说

— 이I£』o,8,M"p ~ 쎄"海 llwpllo,n -
Also, from (K2) we have

(3.17) I (fr^gj wp}Tn^i ~ (/r^p, Wp)m ^ I

—(fr(up ~~ %)?£、(％ ~ 紗)爲，
1 1

— 이 I£、IIo,8,g("p — ‘财 up ~ %)； c(힌如 q

— 이 1/시Io,8訓"P ~ 에0,*k시Io金
Hence, combining (3.16) and (3.17) we estimate

(3.18) I (frUp,以)c - (£标 Wp)miQ I
m (세/시"),8,cll"p— v9IIo,qI1wpIIo,q •

Similarly, since f e &8(Q) we obtain
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(3.19) |(/wp, Wp)^ — (/rwp? WP)qI
<仃-£・)毎(戸-£進吊(迅,每島

— 이Lf — fr llo,oo»n llu?Ilo,n IIwpHo,n， 
and
(3.20) K/r^p, wp)m — (/ wp? wp)m)nl

v ((K - /進，,(K -所p烏(每,"爲

- 이1云 - 冗1(),8〈屉,甫二，湛迅,迅):盘

—ll/r ~ /llo,oo,nliupilo,nllwpllo,n -
The Lemma follows from (3.18), (3.19), (3.20) and (3.13).

As seen in Lemma 3.1, the last dependence of ||u —祁n is on the 
smoothness of a. In this connection, we let

(3.21) Mp>q = max 豚 j II n，

whe호e the subscript q will be omitted when q = 2. Then, we obtain the 
following results which give an estimate for the last term of the right 
side in (3.8).

Lemma 3.3. Let Im € Gp be a quadrature rule deGned on Q C 
R% which satisfies d(m) 一,—1 > 0. Let u € 7fa(Q), a 6 and 
atj G HP(Q) for i,j = 고： 2, such that A = min(a, p) > 2. Then, for 
any 处馬 G S*()(Q) and an approximation 祐 which satisfies (2.17) 
we have

« 99) I 3(场,WJ)- Bnq(吧噂)丨
(} i斯而;

< C{q*T)/|| 이爲+ 厂。헤 Q,"이 I 쎄 i,q}, 

where 卩=min(p, a — 1) and q is a positive integer such that 0 < q < p 
and r = d(m) — p — q > Q.
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Proof. For arbitrary Wp G S*o(Q) we have

(3.23)

<

（祁，祐）-3收（磷，遞）I
max max

（一 睥 dw^\ （— 睥 dw!^\ 
處，可丄一（:어，磕，两丄盘C

For any aZJ i^j = 1,2 and QR G Jh we let q be any integer such 
that 0 < q < p and r = d(m) — p — q > 0. Then since aaZJ E ioo(^), 
due to Lemma 3.2 with vq =易(Ug鸾)and fr = U?(仓祐)，we have

(3.24) "质3时厂E而，奔九」 

duh A
- C｛ 网（叽니。,5 喝- 洗

f）uh dwh
네gj 一 疋（。&7川0,8,시I 有』一｝ 屿亏에」

如 Z o,Q OX3 *

Using Lemma 2.1 and Lemma 2.2 we easily see from the boundedness 
of 11^ and (2.14) that

3孙1 a
S5） 長-芨（파洛岫

W 이屬 -파砌I 侦 注疽f 网I顼 

京如*-】）｛||私-砌膈+ ||헤顼｝

矿（宀）（砂+ 从宀））||떼5 

g-（bT）泌 II 이I洪,

where fi = min（p, cr — 1）.

Also, clearly
(3-26) II 籌I扇 < C|吟扁 < 이I지扁 < 이I쎄® ,

and
(3.27) II 碧打。,qc I网 I扁寮세叫皿 •
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On the other hand, by an interpolation result (see [9,Theorem 3.2], 
[7,Theorem 6.2.4] ) it follows that for w € H이(Q) with > 2,
(3.28) l|w - 파咧ogR 1

< C\\w- 環砒* 康 llw - 環에匕顼 forO<e<|.
Also, taking s = 1 + e and s = 1 — e in (2.21) we have

(3-29) ||w - 環诃I。,°。,C < Ch(I)ll헤植.

Thus, since aav G H*(Q) with A = min(a, p) > 2 it follows from
(3.29) that

(3.30) II。％ ~ H次QSj)|Io,8爲
< Cr-^\\a\\^Mp<。广(1)杪7)||에""纭 •

Moreover, since |5112(0 0：17)|}0 is bounded iWollows from (3125),
(3.26), (3.27) and (3.30) that''
,、 I (〜、睥 dw^\ /〜、3我 dw^\ ,331)|3處,可丿厂(四顽质丄盘|

< C{q*T)泌 II이板玖 + 厂°7赤2赤训"”玲>1网1,段}11咐11" 
where 卩，=min(饱a — 1).

Consequently, we have
z . .(du^ \ (〜、3磅 dw^ \(3.32) max max ( aal}-^-, - - I aatJ—^-,

心么7 \ ’如网丿c V 賦㈱丿”盘

< c{q*T 泌II메" + 厂(卜1)冲-叫|이|%撰编|에、q}||u幻I顽

where p, = min(p, a—1). The Lemma follows from dividing by

By a direct application of Lemma 3.3 and (2.24) to Lemma 3.1 we 
obtain the following main Theorem which gives an asymptotic, H'(Q)- 
norm error estimate for the rate of convergence under numerical quad­
rature rules.

Theorem 3.4. Let Im £ Gp be a quadrature rule defined on Q C 
B?, which satisfies d(m) —p —1 > 0. We assume that u e H차'), a G 
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H°(Q) and &套 G HP(Q) for i, j = 1,2 such that X = min(a,p) > 2. 
Then, for any*positive integer q such that 0 < q <p , we have

(3-33) |g —潮|睥

<。{厂에”2+ 外에" Mp||씨扁},

where 卩，= min(p, a — 1) and r = d(m) — p — g.

proof. Taking G S*,o(Q) with an approximation of u which 
satisfies (2.17), we obtain from Lemma 3.1 that
(3-34) ||u —祐 ||],q

<C{||u-uJ||1)n + sup 
初心,。(Q)

遊）一岛験（祁,S*）| 
iWU }•

Since 0 < q < p it follows from (2.24) and Lemma 3.3 that the first 
term of the right side in (3.34) is dominated by its last term. Hence, 
the proof is completed by a direct application of Lemma3.3 to (3.34).

Wie see from Theorem 3.4 that the rate of conve호gence is essentially 
given by

(3.35) O(g_(bT)/舟in(p,c—l) _|_ 0(m) — P — q)T"a"(aT))

If m is large enough with q = p, then the rate of convergence is Eisymp- 
totically厂(。—1)/舟知(卩,which coincides with that of (2.24). 
In the case where a is sufficiently smooth, i.e. a is large enough, even 
when d(m)就 2p+l with q~p the first term in (3.35) may dominate, so 
that the rate of convergence is asymptotically 0(但一(。」1)九
More precisely, in G-L quadrature rules, using Im with (p + l)-point 
rules we would obtain an asymptotic rate 舟1) j But,
when a is not smooth enough, the first term D九i) may
be dominated by the other term of (3.35). In this situation, using an 
overintegration with a sufficiently large m we may reduce the error 
||u — Q until the first term dominates again. In practice, when a 
is not smooth we may increase the value of d(m) with q ~ p.
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