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THE HFP-VERSION OF THE FINITE
ELEMENT METHOD UNDER
NUMERICAL QUADRATURE RULES

IkK-SunG Kim

ABSTRACT. we consider the hp—version to solve non-constant co-
efficients elliptic equations —div(aVu) = f with Dinchlet bound-
ary conditions on a bounded polygonal domamn € in B2 In [6],
M Suri obtained an optimal error-estimate for the hp—version.
|u —u;"l q < Cp“(""')hmm(pv"_‘)||u||c’Q This optimal result
follows under the assumption that all integrations are performed
exactly In practice, the integrals are seldom computed exactly.
The numerical quadrature rule scheme 1s needed to compute the
integrals in the vanational formulation of the discrete prohlem In
this paper we consider & family Gp = {I;n} of numerical quadrature
rules satisfying certain properties, which can be used for calculat-
1ng the integrals Under the numerical quradrature rules we will give
the vanational form of our non-constant coefficients elliptic problem
and derive an error estimate of |lu — 'iZgH!'Q.

1. Introduction

The finite element method is a particular kind of Ritz-Galerkin pro-
cedure in which the approximating finite-dimensional subspaces are
composed of piecewise polynomials defined on a partition of the given
domain. The convergence is obtained by increasing the dimension of
these subspaces in some manner. There are three versions of the fi-
nite element method. The h-version is the traditional approach ob-
tained by fixing the degree p of the piecewise polynomials at some
value (usually p = 1,2,3)and refining the mesh in order to achieve
convergence. The p-version, in contrast, fixes the mesh and achieves

Received November 19, 1997 Revised May 28, 1998.
1991 Mathematics Subject Classification 65G99

Key words and phrases The Ap version, numerical quadrature rules, non-consta-
nt coefficients elliptic equations



64 Ik-Sung Kim

the accuracy by increasing the degree p uniformly or selectively. The
hp—version-is the combination of both.

In this paper, to solve non-constant coefficients elliptic equations
with Dirichlet boundary conditions on a bounded polygonal domain
Q in R? we consider the hp—version with a quasi-uniform mesh and
uniform p. In [6], I. Babuska and M. Suri already obtained the following
optimal estimate for the hp—version:

11 -yl
< Cp O Npminler =Ny, o for all u € H§(Q), 0 > 1,

where C is independent of u, h, and p [but depends on Q and ai.

The above optimal result follows under the assumption that all in-
tegrations are performed exactly. In practice, the integrals are seldom
computed exactly. The numerical quadrature rule scheme is needed
to compute the integrals in the variational formulation of the discrete
problem. Thus we first consider a family G, = {In} of numerical
quadrature rules satisfying certain properties, which can be used for
calculating the integrals in the stiffness matrix of (2.17). Then, un-
der the numerical quadrature rules we will give the variational form
of our non-constant coefficients elliptic problem and derive an error
estimate of ||u — ﬁg“l o Where 173 is an approximation satisfying (3.6).
We also analyze the cases in which the overintegration may improve
the accuracy of the approximation to allow for optimal results.

2. Preliminaries

Let © be a closed and bounded polygonal domain in R? with the
boundary I'. Let M = {{7"}, h > 0 be a quasi-uniform, regular family
of meshes J" = {Q}} defined on 2, where QF is a closed quadrilateral,
and

(2.1) Qma}c diam(Q"*) = h for all Q" J" e M.
he h

Further we assume that for each Qz € J" there exists an invertible
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mapping T,i‘ Q- Qz with the following correspondence:

(2.2) ez =T e
(23) Te Up(@) et =To (TF) € Up(a),

where ) denotes the reference elements 12 = -1, 1]2 in R? |
(24) U{D)

= {t : tis a polynomial of degree < p in each variable on ﬁ}
and

(25)  Up(O) = {t:t=toTl e Uy(Q)}

We now consider the following model problem of elliptic equations :
Find u € H}(), such that
(2.6) —div(aVu) = f in QC R?,

where two functions a and f satisfy a compatibility conditiontoensure
a solution exists, and

(2.7) H}(Q) = {v € H'()) : u vanishes on T}.
For the sake of simplicity, we assume that

(2.8) 0< Ay <a(z) <Ay forall zeQ,and
(2.9) f € Ly(£2).

In addition, we also assume that there exists a constant A/ > 1 such
that

(210) "TJ? ”'m,oo,ﬁ 3 "(T’?)_lumpo,ﬂg S A for O S m <_: M,

-1
(211) §meos s NTB) ooy SA for 0<Sm<M -1,
where j,? and (j;'g)_l denote the Jacobians of T and (T,f)—1 respec-
tively.
Then, as seen in [8,theorem 3.1.2], we obtain the following correspon-
dence: For any a €[l,], 0 <m < M,

(212) Tewmx(Q) st =1Fo(TH) ' e Wme(Qh)
with norm equivalence

m—2 m-2
(213)  Cihl n‘)||t||m,cm.sz,': < Blhmag € C2h™ @t 0 00

maQ —
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with the subscript o omitted when o« = 2. Namely, we have

(2.14) Crh"™ Vit an < Mt g S C2B Vit -

Let us define
(215) SP(8) = {u € HY(Q) : ugn o (T}) € Up(Q) for all Qf € J*},
where ugn denotes the restriction of u € H'($2) to Qr € J*, and
(2.16) Sp () = SH(Q) N HY ().
Then, using the hp—version of the finite element method with the mesh
J" = {Q}} we obtain the following discrete variational form of (2.6):

Find ul} € §4(Q) satisfying

(2.17) B(u;,‘,v,',‘} = (f, v;,‘)g for all v;‘ € S*a(Q).
where
(2.18) B(u,v) = / aVu - Vuvdz,

Q

the usual inner product

(2.19) (f,v)g=lzfvd$.

Let us now give some approximation results which will be used later.

LEMMA 2.1. For each integer [ > 0, there exists a sequence of pro-
Jections
IL « H(Q) > U,(Q), »=1,2,3,--- such that

(220) 1%, =3, forall ©, € Uy(Q),

(221)  fa-Tal 5, <Cp Il 4 forall ue H (D)
with 0<s<l<r.

Proof. See [9,Lemma3.1].
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LEMMA 2.2. Suppose that TP - & —s QP is an invertible affine
mapping. Then for any v € H7(Q),0 > 0 we have

(2.22) nf_[ligy - 3l 5 < Ch¥llugg |

-

R
'vGU,,{Q) G;Qk

where p = min(p, o — 1) and C is independent of h, p and u.
Proof. The proof is given in [6].

LEMMA 2.3. For each u € H(Q) and Q} € J" there exists a
sequence z,’," € U,,(Q’g),p =1,2,--- such that forany0 <r<g¢

(2.23)
luag = 231l g < CRET ™ ugy ]|, for all 2 € ",

where pp = min(p, o — 1) and C is independent of h, p and wu.
Proof. See |6, Lemma 4.5].

Let w € H?(2),0 > 1 be the solution of (2.6) and u}; the hp—version

finite element solution of (2.17). Then, as seen in [6] we have an esti-
mate

(2.24) flu — uh

» " Lo < Chmm(p,o—l)p-(o-l) ”u”a,ﬂ’

where C is independent of u, h and p.
3. The hp-version under numerical quadrature rules

We consider numerical quadrature rules I,,, defined on the reference
element () by

n(m}

(3.1) () = Y am fam) ~ L f(@) dz,
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where m is a positive integer. Let G, = {In} be a family of quad-
rature rules I, with respect to U,(Q2), p = 1,2,3,- -, satisfying the
following properties: For each I, € Gy,
(K1) @ >0 and Z"eQ for i=1,---,n{m).
~2 ~ 2 -~ ~
(K2) In(f ) <Cilifllog forall feUy(Q).

(K3) Callfloa < In(f) foral Felp@).

where U,(0) = {% . Feu,@)) c U,(@).
K8 In() = [f@dz foral Feluon®,
where d(m) > d(p) > 0.

We also get a family G, g = {Im,n} of numerical quadrature rules
with respect to Sh(§), defined by

n(m) n{m)
(3.2) Iman(far) = Z w} for (@) = Z DT (E] TWiap o TEYET)
. m(Jk fQL‘)
and
(3.3) Ima(f) = 3 Inar(fap):
Qhegh

In particular, one may be interested in Gauss-Legendre(G-L} quad-
rature rules. Let L, denote the cross-products of g—point G-L rules

along the 51 and Ty axeson Q) =1x1, given by

Lo(f) = ZZAW £9) forall fe Lao(Q),

=1 =1
where z7 = (2],%7) € 0 = I x T with the weights @7 and wl.
We consider a family {Lq} >1(p) of G-L quadrature rules with respect
to U,(Q) such that I(p) = p+1. Then, {L,} o>i(p) Satisfy the properties

(K1)—(K4). In fact, wheng > p+1 L (f) is exact for all f € Ud(q)(Q)
with d(g) > 2p+1 > 0, so that (K2) and (K3) hold with Cy = Cs = 1.

Now, we denote by DF the 2 x 2 Jacobian matrix of F : R2 — R?,
and define two discrete inner products
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(34) (u! ’U)m,QL‘ = Im Qf ((uU)Q") = Im(j;?(;;;))gf) on Qf‘; € Jh’

(35)  (wv)na= 2 (v,v), an on (.
Qhejh

Then, under numerical quadrature rules [, in G, we obtain the
following actual problem of (2.17): Find € Sto{Q), such that

(3.6) B a(ty,vh) = (f,uh), for all v} € Sk(9),
where
(37) Buno(@h,uh)= > I,qn(aVik.vuh)

Qregh

Y In(TEavaD) ) (VD) ™ )

QhGJh
Y Y @, 2
aazj -~ , Q‘
Ba: m,
QhGJ" ¥,3=1 a

and G,, are the entries of the matrix

PO@ oI

r———

Here, @ , @,, , %} and % denote the restrictions g (a”)QZ

and (%) o respectively.

Let us now derive an estimate of the error |ju — |
]

hp—version under numerical quadrature rules I,,,. In fact, ||u — u

for the
il

depends on two separate terms. The first dependence is on the error
||z — ugn L Biven in (2.24). Next, the smoothness of @ has influence

upon the error. We will start with the following Lemma.

LEMMA 3.1. Let u be the exact solution of (2.6) and u; that of

(2.17). Let 17,;,‘ be an approximate solution of v which satisfies a discrete
variational form (3.6). Then there exists a constant C independent of

m such that
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(38) -],

. |B(up, wy) = Bma(vy, wp)|
<C  inf {llu—t,v;,‘lll ot sup s PP
vp€55,0(82) ! whesSh () “wp ll 1,0

Proof. Let 'v;‘ be an arbitrary element in S;,“O(Q). Then we have
(39)  Mu—upll, o < Nu~vfll, o +llvp — Bl
From the ellipticity of B, q(-,-), for a constant Cy >0

~hnl -
(310)  Culivh — L < Bmalol — i, of — )
= |Bmal(ol, vk — @) — (f.0h — )|

_ h o h b~
= gBm,Q\Up,Up —-up) — B(uy,vp —u,)|-

Hence, taking the infimum with respect to v € Sp () we have

(311) fu— @l

|B(uj, v} — 1)) - B a(vh, v} —1'2;;)|}
o — gl o '

<C inf u— vt
<c i it gt

The Lemma follows from taking w? = o — @} € S"O(Q).

The following Lemma will be used later.

LEMMA 3.2. Let G, @y € Up(Q)) and f € Loo((Y). Then, for all
U €U4(RN), frelUr(2) with 0<q<p and r=d(m)—p—qg>0
we have
(3-12) ' (f ﬁpaﬁp)ﬁ - (fapaﬁjp)m,ﬁ!

< C{frllo coglliip — allo g + IIf — frllo oo aliallon } I@pilo s

where (' is independent of p, ¢ and m.
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Proof. For any f, € U.(Q) we have

(3-13) l(fap’ @p)ﬁ - (fapv@p)m,ﬁl R R
< ! (f ﬁpy@p)ﬁ - (fraps "Bp)ﬁl + | (ffaiﬁ"{'a?)ﬁ - (ffapiﬁp)m,ﬁ |

+ i (.frapa '&}p)m,ﬁ - (f ﬁp! @P)m,ﬁ | .

Thank to (K4},

(314) (B, Wp)p — (frlg,@p), g = 0 forany ¥, € Uy(f).
Hence,
(3'15) | (frap’ @P)ﬁ - (frap,ﬁp)m,ﬁ |

< | (f?'ap!@p)ﬁ - (frﬁqv@p)§| + |(fr6qv@p)m,ﬁ - (frapw@p)m‘ﬁ |
By the Schwarz inequality we obtain
(3.16) | (friip, Wp)g — (frly, Wp)g |

-~ ~ : 1
-~ ~ —~ o~ B o~ ~
< (fr(Up — V), fr(Tp ~ ¥g))g (wp’wp)g

< Clifello,ooallits — Pallp g | @pllo g -
Also, from (X2) we have
(3.17) | (fri’\qa @p)m,ﬁ - (frap, ﬁp)mfz |
~ -~ 1L 1
< (fr(up - UQ), fr(up - Uq));,ﬁ(wp,wp):i‘ﬁ
~ 1 1
< Olfrllo.co,8(p = T, Bp = Ba)., 6(@pr Bp)
< C“frno,oolﬁllap - aq"o.ﬁ"ﬁp"o,ﬁ
Hence, combining (3.16) and (3.17) we estimate
(3.18) | (Jrip, Wp)g — (frllp, Wp) 3 |

< C “fr"opo,ﬁ"ar - aquo,ﬁllﬁplloﬁ .

Similarly, since f € Loo(Q)) we obtain
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(319) [(fap,Bp)g — (Filp Bpal
< (= 128, (F - )oY (@, p)
< Clf- fr“o,oo,ﬁuapno.ﬁ”ﬁpﬂo,ﬁ ’

and R -

(320)  |(Frlp, Bp), 5 — (Flipy Bp) 3]
< ((Fr - Dt (F - P g@m )} 4
< Cllfr - ﬂlo,m,ﬁ(ﬁpﬁp)i,ﬁ(@w Wp) pmd
< Cfr - f"o'oo'ﬁ”ap"o,ﬁ"7?’1)“0,(3 .

The Lemma follows from (3.18), (3.19), (3.20) and (3.13).

As seen in Lemma 3.1, the last dependence of fju — ﬁgl[ Lo ison the
smoothness of 4. In this comnection, we let

(3.21) Mp,q = Hi%x ”a‘LJ "p,q,ﬁ’

where the subscript ¢ will be omitted when ¢ = 2. Then, we obtain the

following results which give an estimate for the last term of the right
side in (3.8).

LEMMA 3.3. Let I, € G, be a quadrature rule defined on {} C
R?, which satisfles d(m)—p—1>0. Let « € H(Q), a € H*(Q) and
G, € H?(Q)) for i,j =1,2, such that A = min{e, p) > 2. Then, for
any w;," € S;,‘,O(Q) and an approximation u;,‘ which satisfies (2.17)
we have

|B(u2, w:,‘) - Bm,g(u;,‘,w;,‘) f

lwhl, o
< C {q—(a—l)hﬂ"u“o,ﬂ + r‘()\—l)h(a—l]"a"a‘g Mpﬂulll‘g |3

(3.22)

where p = min(p, o — 1} and q is a positive integer such that 0 < g <p
and r=d(m)—p—qg>0.
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Proof. For arbitrary w) € 57 o(Q) we have

(3.23) | B(u),wp) — Bm a(ul, wl) |

<C o Bﬁ" diy, -~ aah 6
Qr'peai)y(h Hzg'xl aa’l_’i 6*\ ? 63:3 Q_ O’Ja’\ ) 83’51 Q“

For any @,, ¢,7 =1,2 and QL‘ € J" we let ¢ be any integer such
that 0 <g<pandr=d(m)—-p—g>0. Then since aa,; € Loo(2),

due to Lemma 3.2 with 9, = & (IT}@) and fr = I2(@3,;), we have
out ot ouh Oty

an YU OWp ) [ O

(3.24) '(aa"aa;y’ aa,)ﬁ ( 0 5%, ax,) Q'
aﬁh N
< C{IME (@84 Mo 00,6 | 52 8" ~ % (H1 h)||
aut 3‘55&
Hlag, - IL@a, ) o all 57 2 || . Sl
7 0,0

Using Lemma 2.1 and Lemma 2.2 we easily see from the boundedness
of I} and (2.14) that

ouh _ 9
gz, 07,

< Clak -y, 5 < Cqtoa A

< Cq~=D{jja - @, 4 + |, o}
< CqC D + he=D) ), g
< CQ—(aﬂl)h””““a'g:,

where g = min(p,o — 1).

(325) | n;a")ll .

Also, clea.rly

(3:26) 3l 5 < Clldkl, 5 < Cllllg < Cllullyan -
and

(327) (521, 5 < CHdbl 5 < Cllwbl, gy
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On the other hand, by an interpolation result (see [9,Theorem 3.2],
[7,Theorem 6.2.4] } it follows that for & € H"(Q) with > 2,

(3.28) fliw — Hgﬁ"o,m,ﬁ
1
< Ol -T2, 5 |16~ T2a|2_, for 0<e<
Also, taking s =1+¢ and s =1—-¢ in(2.21) we have

(329) @ - T2all, 4 < Cp~ o Vlfall, 5

N

Thus, since 4a,, € H M) with A = min(a, p) > 2 it follows from
(3.29) that
(3.30) @@, - M2(@ax;) g 00
< CrO-Vja), oM, < Cr O DREDYgl| ou M, .

Mareover, since [|[TI2(@@.,)llg ., 5 is bounded itfollows from (3.25),
(3.26), (3.27) and {3.30) that

out owh dur owt
(3-31) [ aa?] ~ A_’) 3 7 A_p A aagj —Ap > _Ap" |
dz, 0z, | . oz, 0z, ~
Q m,f)

< C{g™ VDt ful, gy + 1~ A7 DRE Dl on Mplfully gz Hiwplly g
where ¢ = min{p,o — 1).
Consequently, we have

a’\h aAh 3’*h 6’*h
(332)  max max | (aa,,;, “p w”) - (aa, -% s 2 B
N P

Q:'GJ}. %7 a:’f; ’ 653)
< Cle IRl o + 7= *~ DR Do, oMplull; oHiwpl, o

where z = min(p,c—1). The Lemma follows from dividing by ||1.u;,‘||1 o

By a direct application of Lemma 3.3 and (2.24} to Lemma 3.1 we
obtain the following main Theorem which gives an asymptotic, H*({})-
norm error estimate for the rate of convergence under numerical quad-
rature rules.

THEOREM 3.4. Let I, € G, be a quadrature rule defined on 0c
R?, which satisfies d{m)—p—1 > 0. We assume that v € H°({2),a €
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H*(Q) and @,; € H”(ﬁ) for i, = 1,2 such that A = min(a,p) > 2.
Then, for any-positive integer q such that 0 < ¢ < p, we have
(3.33) e — ‘7}5”1,9
< C{g V||, o + r~O-Dhle=Dllaf, o Mltull; o },
where . = min(p,0 — 1} and r = d(m) —p — q.

proof. Taking v;,‘ € S;,‘,O(Q) with an approximation u;,‘ of w which
satisfies (2.17), we obtain from Lemma 3.1 that

(334)  Ju-#hll,,

|B(u;,‘, wg) - Bm‘Q(ug, w;})|

<Cllu~upll, o+ sup
el whESH () ”wg“l‘g

}

Since 0 < g < p 1v foliows from (2.24) and Lemma 3.3 that the first
term of the right side in (3.34) is dominated by its last term. Hence,
the proof is completed by a direct application of Lemma3.3 to (3.34).

We see from Theorem 3.4 that the rate of convergence is essentially
given by

(335) O(q—(o—l)hmin(p,o—l) + (d(m) —p— q)—*()\-—é‘-)h(a_l))'

If m is large enough with ¢ = p, then the rate of convergence is asymp-
totically O(p~{e—Dpmi{Po—1})  which coincides with that of (2.24).
In the case where a is sufficiently smooth, i.e. « is large enough, even
when d(m) =~ 2p+1 with ¢ = p the first term ir (3.35) may dominate, so
that the rate of convergence is asymptotically O(p~ (¢~ pmnpo—1))
More precisely, in G-L quadrature rules, using I,, with (p + 1)-point
rules we would obtain an asymptotic rate O(p~ (e~ Dpmwr(ro-1)) But,
when a is not smooth enough, the first term ¢~ (¢~ Dapmn{ro—1) may
be dominated by the other term of (3.35). In this situation, using an
overintegration with a sufficiently large m we may reduce the error
|| — ﬁ;lll,g until the first term dominates again. In practice, when a

is not smooth we may increase the value of d(m} with q = p.
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