AN EXTENSION OF THE FUGLEDE-PUTNAM THEOREM TO k-QUASIHYPONORMAL OPERATORS

KYO IL SHIN AND HYUNG KOO CHA

ABSTRACT. The Fulgede-Putnam theorem asserts as if A and B are normal operators and X is an operator such that AX = XB, then $A^*X = XB^*$. In this paper, we show that if A is k-quasihyponormal and B^* is invertible k-quasihyponormal such that AX = XB for a Hilbert-Schmidt operator X, then $A^*X = XB^*$.

1. Introduction

Let \mathcal{H} be a separable complex Hilbert space and $\mathcal{L}(\mathcal{H})$ the *-algebra of all bounded linear operators acting on \mathcal{H} . An operator T in $\mathcal{L}(\mathcal{H})$ is called normal if $T^*T = TT^*$, hyponormal if $T^*T \geq TT^*$, quasihyponormal if $T^*(T^*T-TT^*)T \geq 0$ and k-quasihyponormal for a positive integer k if $T^{*k}(T^*T-TT^*)T^k \geq 0$ which is equivalent to $||T^{k+1}x|| \geq ||T^*T^kx||$ for all x in \mathcal{H} . It is well known that the following inclusion relations of the classes of nonnormal operators defined above are as follows and they are proper ([5],[6],[9]);

Normal \subsetneq Hyponormal \subsetneq Quasihyponormal \subsetneq k-Quasihyponormal.

The classical Fuglede-Putnam theorem is as follows:

THEOREM 1.1. If A and B are normal operators and if X is an operator such that AX = XB, then $A^*X = XB^*$.

Originally, so called, Fuglede-Putnam theorem has been initiated by Fuglede in [4] under the condition A = B in Theorem 1.1 and one year after Putnam relaxed the condition in [8].

In [2], S. K. Berberian extended the Fuglede-Putnam theorem as follows:

Received September 29, 1997.

¹⁹⁹¹ Mathematics Subject Classification, 47B20

Key words and phrases Normal, hyponormal, quasihyponormal, k-quasihyponormal, Hilbert-Schmidt class, trace class.

THEOREM 1.2. Suppose A, B, X are operators in Hilbert space \mathcal{H} , such that AX = XB. Assume also that X is an operator of Hilbert-Schmidt class. Then $A^*X = XB^*$ under either of the following hypotheses:

- (1) A and B* are hyponormal;
- (2) B is invertible and $||A|| ||B^{-1}|| \le 1$.

In [5], T. Furuta relaxes the hypotheses on A and B in Theorem 1.2 at the cost of requiring X to be of Hilbert-Schmidt class as follows:

THEOREM 1.3. Suppose A, B and X are operators on the Hilbert space \mathcal{H} such that AX = XB. Assume also that X is an operator of Hilbert-Schmidt class. Then $A^*X = XB^*$ under any one of the following hypotheses:

- (1) A is k-quasihyponormal and B^* is invertible hyponormal
- (2) A is quasihyponormal and B* is invertible hyponormal.

In this paper, we show that the hyponormality of B^* in Theorem 1.3 can be relaxed by the k-quasihyponormality of B^* .

2. The main theorem

Let T be an operator in $\mathcal{L}(\mathcal{H})$ and suppose that $\{e_n\}$ is an orthonormal basis for \mathcal{H} . We define the Hilbert-Schmidt norm of T to be

$$||T||_2 = (\sum_{n=1}^{\infty} ||Te_n||^2)^{\frac{1}{2}}.$$

This definition is independent of the choice of an orthonormal basis ([3],[7]).

If $||T||_2 < \infty$, T is said to be a Hilbert-Schmidt operator. By $\mathcal{B}_2(\mathcal{H})$ we define the set of all Hilbert-Schmidt operator on \mathcal{H} . Let $\mathcal{B}_1(\mathcal{H}) = \{C = AB \mid A, B \in \mathcal{B}_2(\mathcal{H})\}$. Then operators belonging to $\mathcal{B}_1(\mathcal{H})$ are called $trace\ class$ operators. If $\{e_n\}$ is an orthonormal basis for \mathcal{H} , we define a linear functional $tr : \mathcal{B}_1(\mathcal{H}) \to \mathbb{C}$ by

$$tr(C) = \sum_{n=1}^{\infty} \langle Ce_n, e_n \rangle,$$

then the definition of tr(C) does not depend on the choice of an orthonormal basis and tr(C) is called the trace of C ([3],[7]). The following theorem in [3], [7] is well known:

THEOREM 2.1. a) The set $\mathcal{B}_2(\mathcal{H})$ is a closed self-adjoint ideal of $\mathcal{L}(\mathcal{H})$;

b) If $\langle A, B \rangle = \sum_{n=1}^{\infty} \langle Ae_n, Be_n \rangle = tr(B^*A) = tr(AB^*)$ for A and B in $\mathcal{B}_2(\mathcal{H})$, then \langle , \rangle is an inner product on $\mathcal{B}_2(\mathcal{H})$ and $\mathcal{B}_2(\mathcal{H})$ is a Hilbert space with respect to this inner product, where $\{e_n\}$ is any orthonormal basis for H.

THEOREM 2.2. If $T \in \mathcal{B}(\mathcal{H})$ and $A \in \mathcal{B}_2(\mathcal{H})$, then $||TA||_2 \le ||T|| ||A||_2$, $||A^*||_2 = ||A||$, $||AT||_2 \le ||T|| ||A||_2$.

Let A, B in $\mathcal{L}(\mathcal{H})$, from Theorem 2.1, and Theorem 2.2, we can define an operator \mathcal{J} in $\mathcal{L}(\mathcal{B}_2(\mathcal{H}))$ by

$$\mathcal{J}X = AXB$$
,

which is due to Berberian in [2]. Evidently, $\|\mathcal{J}\| \leq \|A\| \|B\|$ and its adjoint \mathcal{J}^* is given by

$$\mathcal{J}^*X = A^*XB^*$$

because of

$$<\mathcal{J}^*X, Y>=< X, \mathcal{J}Y>=< X, AYB>=tr((AYB)^*X)$$

= $tr(XB^*Y^*A^*)=tr(A^*XB^*Y^*)=< A^*XB^*, Y>.$

If $A \geq 0$ and $B \geq 0$, then $\mathcal{J} \geq 0$ and $\mathcal{J}^{\frac{1}{2}}X = A^{\frac{1}{2}}XB^{\frac{1}{2}}$ since

$$<\mathcal{J}X, X> = tr(AXBX^*) = tr(A^{\frac{1}{2}}XBX^*A^{\frac{1}{2}})$$

= $tr((A^{\frac{1}{2}}XB^{\frac{1}{2}})(A^{\frac{1}{2}}XB^{\frac{1}{2}})^*) \ge 0.$

LEMMA 2.3. If A and B^* are k-quasihyponormal, then the operator \mathcal{J} in $\mathcal{L}(\mathcal{B}_2(\mathcal{H}))$ defined by $\mathcal{J}X = AXB$ is also k-quasihyponormal.

Proof. For every $X \in \mathcal{B}_2(\mathcal{H})$, we have

$$\mathcal{J}^{*k}(\mathcal{J}^{*}\mathcal{J} - \mathcal{J}\mathcal{J}^{*})\mathcal{J}^{k}X
= (\mathcal{J}^{*k+1}\mathcal{J}^{k+1} - \mathcal{J}^{*k}\mathcal{J}\mathcal{J}^{*}\mathcal{J}^{k})X
= A^{*k+1}A^{k+1}XB^{k+1}B^{*k+1} - A^{*k}AA^{*}A^{k}XB^{k}B^{*}BB^{*k}
= (A^{*k+1}A^{k+1} - A^{*k}AA^{*}A^{k})XB^{k+1}B^{*k+1}
+ A^{*k}AA^{*}A^{k}X(B^{k+1}B^{*k+1} - B^{k}B^{*}BB^{*k}).$$

In this case, since A and B^* are k-quasihyponormal, it follows that

$$\left\langle (A^{*k+1}A^{k+1} - A^{*k}AA^{*}A^{k})XB^{k+1}B^{*k+1}, X \right\rangle$$

$$= tr\left((A^{*k+1}A^{k+1} - A^{*k}AA^{*}A^{k})XB^{k+1}B^{*k+1}X^{*} \right)$$

$$= tr\left(((A^{*k+1}A^{k+1} - A^{*k}AA^{*}A^{k})^{\frac{1}{2}}XB^{k+1}) \right)$$

$$((A^{*k+1}A^{k+1} - A^{*k}AA^{*}A^{k})^{\frac{1}{2}}XB^{k+1})^{*} \right)$$

$$\geq 0$$

and

$$\left\langle (A^{*k}AA^{*}A^{k}X(B^{k+1}B^{*k+1} - B^{k}B^{*}BB^{*k}), X \right\rangle$$

$$= \left\langle A^{*}A^{k}X(B^{k+1}B^{*k+1} - B^{k}B^{*}BB^{*k}), A^{*}A^{k}X \right\rangle$$

$$= tr \left(A^{*}A^{k}X(B^{k+1}B^{*k+1} - B^{k}B^{*}BB^{*k})X^{*}A^{*k}A \right)$$

$$= tr \left((A^{*}A^{k}X(B^{k+1}B^{*k+1} - B^{k}B^{*}BB^{*k})^{\frac{1}{2}} \right)$$

$$(A^{*}A^{k}X(B^{k+1}B^{*k+1} - B^{k}B^{*}BB^{*k})^{\frac{1}{2}} \right)$$

$$\geq 0.$$

Therefore, \mathcal{J} is also k-quasihyponormal.

Lemma 2.4. If B is invertible k-quasihyponormal, then B^{-1} is also k-quasihyponormal.

Proof. Since B is k-quasihyponormal, $B^{*k}(B^*B-BB^*)B^k = (B^{*k+1}B^{k+1}-B^{*k}BB^*B^k) \ge 0$. Thus, we have

$$B^{-1}B^*BB^{*-1} - I = (B^{*k}B)^{-1}(B^{*k+1}B^{k+1} - B^{*k}BB^*B^k)(B^*B^k)^{-1}$$

$$\geq 0.$$

Since $A \ge I$ implies $A^{-1} \le I$, we have $B^*B^{-1}B^{*-1}B \le I$. Therefore, we have

$$(B^{*-1})^{k+1}(B^{-1})^{k+1} - (B^{*-1})^k B^{-1} B^{*-1} (B^{-1})^k$$

=(B*^{-1})^{k+1} (I - B^* B^{-1} B^{*-1} B) (B^{-1})^{k+1} \ge 0,

which completes the proof.

THEOREM 2.5. If A is k-quasihyponormal and B^* is invertible k-quasihyponormal such that AX = XB for any operator X in $\mathcal{L}(\mathcal{B}_2(\mathcal{H}))$, then $A^*X = XB^*$.

Proof. Let \mathfrak{J} be the operator on $\mathcal{B}_2(\mathcal{H})$ defined by $\mathfrak{J}X = AXB^{-1}$ Since $(B^*)^{-1} = (B^{-1})^*$ is k-quasihyponormal by Lemma 2.4. \mathfrak{J} is also k-quasihyponormal by Lemma 2.3. The hypothesis AX = XB implies $\mathfrak{J}X = AXB^{-1} = X$ and this relation yields $\|\mathfrak{J}^*X\| = \|\mathfrak{J}^*\mathfrak{J}^kX\| \le \|\mathfrak{J}^{k+1}X\| = \|X\|$ by k-quasihyponormality of \mathfrak{J} . Since $<\mathfrak{J}X$, $X > = \|X\|^2$, we have $\|\mathfrak{J}^*X - X\|^2 \le \|X\|^2 - 2\|X\|^2 + \|X\|^2 = 0$ and this implies $\mathfrak{J}^*X = X$. Hence, we obtains $A^*X(B^{-1})^* = \mathfrak{J}^*X = X$. Therefore, $A^*X = XB^*$ which is the desired relation.

References

S K. Berberian, Note on a theorem of Fuglede and Putnam, Proc Amer Math Soc. 10 (1959), 175-182.

^[2] ______, Extension of a theorem of Fuglede and Putnam, Proc. Amer. Math. Soc. 71 (1978), 113-114

- [3] J. B. Conway, Subnormal Operators, Research Notes in Math, Vol 51, Pitman Advanced Pub Program, 1981.
- [4] B. Fuglede, A Commutativity theorem for normal operators, Proc. Nat. Acad. Sci. 36 (1950), 35-40.
- [5] T. Furuta, On relaxation of normality in the Fuglede-Putnam theorem, Proc. Amer. Math. Soc. 77 (1979), 324-328.
- [6] P. R. Halmos, A Hilbert Space Problem Book, Springer-Verlag, 1978.
- [7] G. J. Murphy, C*-algebra and Operator Theory, Academic Press Inc, 1990.
- [8] C. R. Putnam, On normal operators in Hilbert space, Amer. J. Math. 73 (1951), 357-362.
- [9] N. C. Shah and I. H. Sheth, Some Results on Quasihyponormal Operators, J. Indian Math. Soc. 39 (1975).

Department of mathematics Hanyang University Seoul 133-791, Korea