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NEW INEQUALITIES FOR THE
MOMENTS OF GUESSING MAPPING

S. S. DRAGOMIR AND J. VAN DER HOEK

ABSTRACT. Using some mequahties for real numbers and integrals
we print out here some new inequalities for the moments of guessing

mapping which complement the recent results of Ankan [1) and
Boztas {2].

1. Introduction

J. L. Massey in [4] considered the problem of guessing the value of
a realization of a random variable X by asking questions of the form:
“Is X equal to 7" until the answer is “Yes”.

Let G(X) denote the number of guesses required by a particular
guessing strategy when X = 1.

Massey observed that E{(G(X)), the average number of guesses, is
minimized by a guessing strategy that guesses the possible values of X
in decreasing order of probability.

We begin by giving a formal and generalized statement of the above
problem by following E. Arikan {1].

Let (X,Y) be a pair of random variables with X taking values 1n
a finite set X of size u, Y taking values in a countable set . Call a
fuction G(X) of the random variable X a guessing function for X if
G:X — {1,...,n} is one-to-one. Call a function G(X|Y) a guessing
function for X given Y if, for any fixed value Y = y, G(X|y) is a
guessing function for X. G{X|Y) will be thought of as the number of
guesses required to determine X where the value of Y is given.

The following inequalities on the moments of G(X) and G(X|Y)
were proved by E. Arikow in the recent paper [1].
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THEOREM 1.1. For an arbitrary guessing function G(X) and G(X|Y)
and any p > 0, we have:

14p
BGX)) > (1+1nn)? {Z px(m)nt—p]

rEX
and
1+p
EGXIY)P12(1+ln)?> (> Px,y(x,y)“*%’]
yey LzeX

where Px y, Px are probability distributions of (X,Y) and X, respec-
tively.

Note that, for p = 1, we get the following estimations on the average
number of guesses:

2
[Zocx Px(@)t]
E(G(X) 2 1+lan

and

2
Lyey [zxex Px y(z,y) %]

E(GXIY)) 2 =

To simplify the notation further, we assume that the z; are num-
bered such that z; is always the k*! guess. This yields

EC) =Y ¥n (p20)
k=1

In paper [2] Boztag proved the following analytic inequality and
applied it for the moments of guessing mapping:
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THEOREM 1.2. The relation

(1.1) [Z ! ] > (K~ (k-1)7)

k=1 k=1

where r > 1, holds for any positive integer n, provided that the weights
Pi,-.., Dy are nonnegative real number satisfying the condition:

T 1 r T
w2 pl<y (P17 +-+87) k=12, n -1
If we now consider the guessing problem, we note that (1.1) can be
written as [2]:

1+p

ip}c/(l'i-p)} >E (Gl+p) o) [(G _ l)l+p]
=1

for guessing sequences obeying (1.2).
In particular, using the binomial expansion of (G — 1)!*? we have
the following corollary [2]:

COROLLARY 1.3. For guessing sequences obeying (1.1) and (1.2)
with r = 1 4+ m, the m*® guessing moment, m > 1 being an integer,
satisfies:

+m

[Z pl/(lm)} 4 _Hl_m {(m; 1) E(G™Y)
- (m;I)E(G’"‘l) +-~+(-1)"‘“}-

The following inequalities immediately follow from Corollary 1.3:

E(G) < = [Zp‘”]

E(G™) <

and

E(G*) <

W

n 3
[Zp}!“‘] +E(G) - 3.

k=1
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2. Some new analytic inequalities

We shall start with the following simple integral inequality which is
useful in the sequel:

LEMMA 2.1. Let f:[0,T] — R be an integrable mapping on [0, T}
with:

(B) m< f(z) <M forall z€[0,T], T>0

Then we have the inequality:

m—2_rt
p+1
(2.1) T T P
ST”] f(u)du—/ uP fu) du < M ——T7+!
0 0 pt+1
for all p > 0.

Proof. By the condition (B) we get:
m (TP - w?) < (T7 - w) f(u) < M (I” — o)

for all w € [0,7} and p > 1.
Integrating this inequality on [0, T], we get:

T
m/ (T? — ) du
0

ST”/OTf(u)du—/oTupf(u)duSM/OT(T”—UP) du.

As

T p+1
/(Tp—u”)du:T’“—T =L _gra1
) p+1 p+1

and the inequality (2.1) is proved.

Using this result, we can print out the following discrete inequality
which can be applied for the moments of guessing mapping.
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THEOREM 2.2. Let a, € [m, M| for alli = 1,...,n. Then we have
the inequality:

4

m——nPtl 4 K
p+1
(2.2) (-DPH &
- ?
< |nP 4+ —— <K+ M pil
_[n + O ]g <K+ M2

_ L NG (P
K'—p+1[( 1 >,§=12 a, ( 9 )zgzlz a,+ ...
+if{p+1 Z

andpeN,p>1.

Proof. Consider the mapping f : [0,n] — R given by

a;, u€ [0, 1)
f(u) — as, uE [1,2)

---------

This mapping is integrable on [0, n] and, of course, m < f(z) < M for

all z € {a,b].
We have
n n—1 141 n—1 n
[ twa=3 [ =Y an=3a
0 =0 V? 1= =1
and
n n—1 .i41 n-—1 (1 + 1)p+1 _ 4o+l
Ip::/ upf(u)du=z/ u"f(u)duzz 1 Q41
0 1=0v? =0 P
1

=71 > [ = (i - 1)P*] a..
=1
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But
#F— (i — 1P

1 1
S e e ey R

and thus

1 ’P+1 Pa. — p-f-l = p—1
I, = p+1{( )Z (2 )Zz a,+...

=1 =1

+ (—1)pt! (pt 1) ZzaI + (- 1)p+22a,] :

=1

Now using Lemma 2.1, we deduce:

Luﬂl

which is equivalent to the desired inequality (2.2).

The following result is well known in the literature as the integral
Griiss’ inequality [5]:

LEMMA 2.3. Let h,g : [e,b] - R be two integrable functions so
that

my € g{z) < My, my <h(z) < M, for all z € (a,b].
Then we have the estimation:

1

b—a / (‘r)h(x)dx—— / 9(x) dx— / h(z) dz

< 2O — my) (Mz — o)

(2.3)
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and the constant % is the best possible one.

The following'discrete version of Griss’ inequality is important by
its applications for the moments of guessing mapping.

THEOREM 2.4. Let a,,b, € R (i = i,n) be so that
e<a, <A, b<b <B forall it=1i,n.
Then we have the inequality:

1 & - 1« 1
—_ —_ . —_ < - — _— .
(2.4) - 1§=1 a,b, - E @~ ,E=1 b,| < 4(A a)(B - b)

=1

Proof. We choose in Gruss’ integral inequality

a;, z€l0,1)
o(a) = a2, z¢€[1,2)
e zEln-1m]
and by, z¢€[0,1)
h(z) = by, z€[1,2)

---------------

Then my = a, M} = A,m9 =band My = B and

n

/Dn g(x)dx = gah /: h(z)dz = gb, and /: g{x)h(z)dz = Za,bi

=1

and the theorem is proved.

The following lemma contains an integral inequality which is inter-
esting in itself too
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LEMMA 2.5. Let f :[a,b] — R be an integrable mapping. Then we
have the inequality:

/:(:c —a)’ f(z)dz - a)pH / f(z)dz

(2.5)

— g+

< LL(M —m)
4
where
M:= sup f(z)<oo m:= inf f(z)>~cc

x€fa,bl x€la,bj

and p > 0.

Proof. Follows by Griiss’ integral inequality for g(z) := (xr—a)? and
h(z) := flz),z € [a,b].

We can apply this lemma to prove a discrete inequality which is
important by its applications for the moments of guessing mapping.

THEOREM 2.6. Let a, € [m, M| for all i = 1,...,n. Then we have
the inequality:

(1) g () e

=1
(2.6) (1 pt1 {P+1 ia; — (P + (=1 p+1 . N
) (1)§; (ot + ) Y
< _(Pi_i)”ﬂ(M_m)

foralpe N, p> 1.

Proof. Let choose in Lemma 2.5, a2 =0, b =n, f(z) = @41, T €
[i,i+1), ¢=0,...,n—1. Then we have:

LU@M=2%
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and

j: P f(z) dz = = [(p N 1) Y ita (p+ 1) > i lat

=1 =1
p+1{Pp+1 P2
-4 (—1) ( 1 >‘Z£zaz+( 1) Za{l.
Using the inequality (2.5) we get:

1 1\ — 1\ &
p+1 [(ZhlF )Zip‘““(p; )Zip_1“=+

=1

s (pT 1) 2 imt (- 1)”’“22@:

=1

.np-i-l n

12

-n’”’I

(M —m)
and the inequality (2.6) is obtained.

In paper {3] Dragomir and Ionescu have proved between other the

following counterpart of Jensen’s inequality for differentiable mappings
of a real variable:

THEOREM 2.7. Let f : I € R — R be a convex differentiable
mapping on the interior of I and p, > 0,2, € I with P, := % . p. > 0.
Then we have the following counterpart of Jensen'’s discrete inequality:

0< Fl,; Zpaf(icz) —f (’"Pgl; sza’z)
(2.7) =l n
S SN ERES PN WA}
" o=1 o= 1=t

Proof. For the sake of completeness, we shall give here a short proof.
By the convexity of f in I we have that:

fx) = fly) > f'y)(z—v)
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for all x,y in the interior of . Choosing T = T,l;- Yo P, and y =
we get:

1 ’ 1"
f (P—n;}"z-’-’?;) _f(IJ) 2 f (333) (P_n ;pm —.’L'J') .

If we multiply by p, and summing over 7 to 1 at n we derive:

n

f (F Zpaxa) ‘ijf (xJ)

=1

=0
et

pif'(z;) = Y pizi- f(z5)

i j=1

2 Pi Zp‘x,- .

n n
n —

=1 3

which is obviously equivalent to (2.7).

COROLLARY 2.8. Leta, > 0(: =1 n). Assume A, :=3 ., a,.

1. Ifp>1, then we have the inequality:
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3. Some inequalities for moments of guessing mapping

The following estimation result for the p-moment of the guessing
mappings holds.

THEOREM 3.1. Let X be a random variable having the probability
distribution p = (p,),i = 1,n. Then we have the inequality:

(31) E@EX)7) - 13 | < ”_(’_‘%‘_1)(@ _Py)

2=1
where
Py = max{p,}i =1,n} and P, := min{p,}i = L,n}

and p > 0.

Proof. We shall apply Theorem 2.4 for a, = i? and b, = p,(i = 1, n)
to get

- Zz”pz g - %;pz o i lp)(fM ~Fn)

=

which is equivalent to (3.1).

COROLLARY 3.2. If we assume that for a givene > 0 and n > 1,
we have

4

0< Py — Py < —t
S P =P < 05T

then

n

E(G(X)P) - %Zi” <e.

=1
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REMARK 3.3. If we put in (3.1) p = 1, we get:

n+1
2

If we choose in (3.1) p = 2, we get

o) - | < 20D p, p).

E(G’(X)Q) _ {(n+1D(2n+ l)l < n(n? —1)(PM —P)

6 4
and, finally, for p = 3, we obtain
2 3 _
E(G(X)3)_n(n1-1) < n(n4 1)(PM‘"Pm)~

The following theorem also holds.
THEOREM 3.4. With the assumptions of Theorem 3.1, we have the

inequality:
(") EGeon - (75 ) Bewr .
(32) + (-1 (p“l“ D BGE0) + (1) =t
< EE - )

provided that p € N, p > 1.

Proof. Follows by Theorem 2.6 choosing a, = p, and taking into
account that 3 p, = 1.

COROLLARY 3.5. If we assume that for a given € > 0 and n > 1,
we have:

0<Py~-P, < G“r[lf%;*j
then
(71 e - (73 ) Beoor) +.

+(__1)p+l (Pi‘l> E(G(X)) + (_1)p+2 _ np+1 < e
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REMARK 3.6. If in (3.2) we put p =1, we get:

n? 41 n?
BGO0) - 5| < T (P P
and if we choose p = 2, we get.
nd —1

[E@00 - BG00) - 5 < 5P~ P

Finally, the following theorem also holds.

THEOREM 3.7. With the assumptions of Theorem 3.4, we have the
inequality

p p+1
1 p+1
<nP— —— Py 4 ...
(33) <n p+1[( L )E(G(X))+

0 (P BO00) + (17 P Bt

wherep e Nand p > 1.

Proof. The argument follows by Theorem 2.2 choosing a, = p,, and
taking into account that:

> po=1 andm=Pp, M =Py

=1

We shall omit the details.

COROLLARY 3.8. With the above assumptions we have:

o [(*’ N 1)_f_s,*(c:(x))f’) +o

p+1
_1\pHi P+1 o2l p Pm+PM p+1
+ ot (P Beoo) + (] - B B
< pl-PM;Pm-np“.
Sor

Using Corollary 2.8, we can state the following result for the mo-
ments of guessing mapping:
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THEOREM 3.9. Let X be a random variable and G(X) an arbitrary

guessing function. Then

1

2

. If p > 1, then we have the inequality:
0 < E(G(X)) - [E(G(X))P < pE(G(X)?) — E(G(X)P™Y).
. If p € (0,1), then we have the reverse inequality, i.e.,

0 < [B(GIXNP-E(G(X)) < plE(G(X) E(G(X)F~1)~E(G(X))]-

Proof. Follows by Corollary 2.8 choosing a; = p;,% = 1, n and taking

into account that 3 . p; = 1.

[1}
[2]
(3]
4]
i8]
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