SOME REMARKS ON THE SPECTRUM OF THE LAPLACE-BELTRAMI OPERATOR

Tae Ho Kang

Abstract

We study some spectral properties of the Laplace-Beltram operator on compact Riemannian manifolds.

1. Introduction

Let (M, g) be a compact manifold of dimension m with metric tensor g. Let $\Delta^{p}=d \delta+\delta d$ be the Laplace-Beltrami operator actıng on the space of smooth p-forms. Then we have the spectrum of Δ^{p} for each $0 \leq p \leq n$

$$
\operatorname{Spec}^{p}(M, g):=\left\{0 \leq \lambda_{1, p} \leq \lambda_{2, p} \cdots \uparrow+\infty\right\},
$$

where each eigenvalue is repeated according to its multiphcity. Many authors (e.g., $\{1,2,3,5,6,8]$) have studied the relationship between the spectrum of M and the geometry of M. In this paper we shall prove,

Theorem A Let (M, g) and $\left(M^{\prime}, g^{\prime}\right)$ be compact Einstein mantfolds with $\operatorname{Spec}^{p}(M, g)=\operatorname{Spec}^{p}\left(M^{\prime}, g^{\prime}\right)$ for an arbitrary fixed $p \geq 0$ (which implies $\operatorname{dim} M=\operatorname{dim} M^{\prime}=m$). If $(m, p) \notin\{(15,1),(15,2),(16,2)$, $(15,13),(15,14),(16,14)\}$ and $m(m-1)-6 p(m-p) \neq 0$, then (M, g) is of constant sectional curvature c if and only if $\left(M^{\prime}, g^{\prime}\right)$ is of constant sectional curvature $c^{\prime}=c$.

Corollary Let (M, g) be an m-dimensional compact Einstein manifold and (S^{m}, can $)$ the standard Euclidean sphere. If Spec ${ }^{p}(M, g)=$ $\operatorname{Spec}^{p}\left(S^{m}, c a n\right)$, then, for those pairs (m, p) listed in Theorem A, (M, g) is isometric with ($S^{m}, c a n$).

Recelved July 24, 1998
The Present Studies were Supported (in part) by a grant from Univ. of Ulsan, BSRI-97-1404 and TGRC-KOSEF

THEOREM B. Let (M, g) and $\left(M^{\prime}, g^{\prime}\right)$ be a compact Riemanmian manifold with $\operatorname{Spec}^{p}(M, g)=\operatorname{Spec}^{p}\left(M^{\prime}, g^{\prime}\right)$ and $(m, p) \in\{(3,0),(3,1),(15,1)$, $(3,2),(15,2),(16,2),(15,13),(15,14),(16,14)\}$. Then (M, g) is Einsteinian if and only if $\left(M^{\prime}, g^{\prime}\right)$ is Einsteinian.

2. Preliminaries and proofs

For each $p \leq m(=\operatorname{dim} M)$ the Minakshisundaram-Pleijel-Gaffney asymptotic expansion for $\operatorname{Spec}^{p}(M, g)$ is given by

$$
\begin{align*}
\sum_{\alpha=0}^{\infty} \exp \left(-\lambda_{\alpha, p} t\right) & =(4 \pi t)^{-\frac{m}{2}}\left[a_{0, p}+t a_{1, p}+\cdots+t^{N} a_{N, p}\right] \tag{2.1}\\
& +o\left(t^{N-\frac{m}{2}+1}\right) \quad \text { as } \quad t \downarrow 0
\end{align*}
$$

where $a_{0, p}, a_{1, p}, a_{2, p}, \cdots$ are numbers which is expressed by (see cf. $[2,3]$)

$$
\begin{gather*}
a_{0, p}=\binom{m}{p} \int_{M} d M \tag{2.2}\\
a_{1, p}=\frac{1}{6}\left[\binom{m}{p}-6\binom{m-2}{p-1}\right] \int_{M} \sigma d M
\end{gather*}
$$

where σ denotes the scalar curvature of M, and for $p \notin\{0,1,2,3, m-$ $1, m\}$

$$
\begin{equation*}
a_{2, p}=\alpha \int_{M}\left[P_{1}|C|^{2}+\frac{m-3}{m-2} P_{2}|E|^{2}+\frac{(m-2)(m-3)}{m(m-1)} P_{3} \sigma^{2}\right] d M \tag{2.4}
\end{equation*}
$$

where C, E are the Weyl conformal curvature tensor field and the Einstein tensor field respectively on $M, d M$ denotes the volume element of M and

$$
\begin{aligned}
& P_{1}:=P_{1}(m, p)=2 m^{4}-(30 p+12) m^{3}+\left(210 p^{2}-30 p+22\right) m^{2} \\
&-\left(360 p^{3}-30 p^{2}+12\right) m+180 p^{4}
\end{aligned}
$$

$$
\begin{aligned}
P_{2}:=P_{2}(m, p)= & -2 m^{4}+(180 p+18) m^{3}-\left(900 p^{2}+120 p+40\right) m^{2} \\
& +\left(1440 p^{3}+120 p^{2}+240 p+24\right) m-720 p^{4}-240 p^{2}
\end{aligned}
$$

$$
P_{3}:=P_{3}(m, p)=5 m^{4}-(60 p+12) m^{3}+\left(240 p^{2}+60 p+13\right) m^{2}
$$

$$
-\left(360 p^{3}+60 p^{2}+60 p+6\right) m+180 p^{4}+60 p^{2}
$$

$$
\alpha:=\frac{\binom{m-4}{p-2}}{360 p(p-1)(m-p)(m-p-1)} .
$$

For $p \in\{0,1,2,3, m-1, m\}$, the formula (2.4) is transformed into the following form ;

$$
\begin{equation*}
a_{2, p}=\beta \int_{M}\left[Q_{1}|C|^{2}+\frac{m-3}{m-2} Q_{2}|E|^{2}+\frac{(m-2)(m-3)}{m(m-1)} Q_{3} \sigma^{2}\right] d M, \tag{2.5}
\end{equation*}
$$

where for $\imath=1,2,3$
(i) if $p=0$, then

$$
\beta=\frac{1}{360}, \quad Q_{\imath}=Q_{\imath}(m)=\frac{P_{\imath}(m, 0)}{m(m-1)(m-2)(m-3)},
$$

(ii) if $p=1$, then

$$
\beta=\frac{1}{360}, \quad Q_{2}=Q_{\imath}(m)=\frac{P_{2}(m, 1)}{(m-1)(m-2)(m-3)},
$$

(iii) if $p=2$, then

$$
\beta=\frac{1}{2 \times 360}, \quad Q_{2}=Q_{2}(m)=\frac{P_{\imath}(m, 2)}{(m-2)(m-3)},
$$

(iv) if $p=3$, then

$$
\beta=\frac{1}{6 \times 360}, \quad Q_{2}=Q_{2}(m)=\frac{P_{2}(m, 3)}{m-3},
$$

(v) if $p=m-1$, then

$$
\beta=\frac{1}{360}, \quad Q_{\imath}=Q_{\imath}(m)=\frac{P_{\imath}(m, m-1)}{(m-1)(m-2)(m-3)},
$$

(vi) If $p=m$, then

$$
\beta=\frac{1}{360}, \quad Q_{\imath}=Q_{\imath}(m)=\frac{P_{\imath}(m, m)}{m(m-1)(m-2)(m-3)} .
$$

Remark 1. (1) The sign of the coefficients of $|C|^{2},|E|^{2}$ and σ^{2} in the formula (2.5) are respectively determined by the polynomials P_{1}, P_{2} and P_{3}.
(ii) Assume that $\operatorname{Spec}^{p}(M, g)=\operatorname{Spec}^{p}\left(M^{\prime}, g^{\prime}\right)$. Then $\operatorname{dim} M=\operatorname{dim} M^{\prime}$ is derived from (21)

From now on we shall write (2.4) and (2.5) in the following form ;

$$
=\gamma \int_{M}\left[R_{1}|C|^{2}+\frac{m-3}{m-2} R_{2}|E|^{2}+\frac{(m-2)(m-3)}{m(m-1)} R_{3} \sigma^{2}\right] d M,
$$

where γ is either α or β, and R_{\imath} is either P_{\imath} or $Q_{\imath}(i=1,2,3)$.
Remark 2. (1) The equation $\binom{m}{p}-6\binom{m-2}{p-1}=0$ if and only if $\quad m(m-1)-6 p(m-p)=0 \quad$ if and only if $\quad u^{2}-12 v^{2}=1$, where $m=u-1, p=\frac{u-1}{2} \pm v$. The least solutions are $(u, v)=$ $(7,2),(97,28),(1351,390), \cdots$, which give $(m, p)=(6,1),(6,5),(96,20)$,
$(96,76) \cdots$.
(ii) The polynomial R_{1} has the only solutions $(m, p)=(15,1),(15,2)$, $(16,2),(15,13),(15,14),(16,14)(c f .[4])$

Proof of Theorem A Since M and $M^{\prime}\left(\operatorname{dim} M=\operatorname{dim} M^{\prime}=m\right)$ are Einstein manifolds, $E=0=E^{\prime}$, and σ, σ^{\prime} are constants. By Remark 2(i) and (2.3), we have $\sigma=\sigma^{\prime}$. (2.6) with $\operatorname{Spec}^{p}(M, g)=\operatorname{Spec}^{p}\left(M^{\prime}, g^{\prime}\right)$ yields

$$
\int_{M} R_{1}|C|^{2} d M=\int_{M^{\prime}} R_{1}\left|C^{\prime}\right|^{2} d M^{\prime}
$$

But for $(m, p) \notin\{(15,1),(15,2),(16,2),(15,13),(15,14),(16,14)\}$, $R_{1} \neq 0$ (Remark 2(ii)). Hence $C=0$ if and only if $C^{\prime}=0$. In particular, for $m=3$ i.e., $C=0=C^{\prime}$ the statement still holds. Q.E.D.

Proof of Theorem B. Assume that (M, g) is Einsteinian, ie., $E=0$. Then, (2.6) imphes that

$$
\begin{align*}
\int_{M^{\prime}}\left[\frac{m-3}{m-2} R_{2}\left|E^{\prime}\right|^{2}\right. & \left.+\frac{(m-2)(m-3)}{m(m-1)} R_{3} \sigma^{\prime 2}\right] d M^{\prime} \tag{2.6}\\
& =\int_{M} \frac{(m-2)(m-3)}{m(m-1)} R_{3} \sigma^{2} d M
\end{align*}
$$

because, for $(m, p) \in\{(3,0),(3,1),(15,1),(3,2),(15,2),(16,2),(15,13)$, (15,14), $(16,14)\}, R_{1}=0$ or $C=0$. It follows from (2 3) and $\sigma=$ constant that

$$
\begin{equation*}
\int_{M^{\prime}} \sigma^{\prime 2} d M^{\prime} \geq \int_{M} \sigma^{2} d M \tag{2.7}
\end{equation*}
$$

Moreover, for $(m, p) \in\{(3,0),(3,1),(15,1),(3,2),(15,2),(16,2),(15,13)$, $(15,14),(16,14)\}$,

$$
\begin{equation*}
R_{2}>0 \quad \text { and } \quad R_{3}>0 \tag{2.8}
\end{equation*}
$$

From (2.6) $\sim(2.8)$, we conclude that $\left|E^{\prime}\right|^{2}=0$, which implies that (M^{\prime}, g^{\prime}) is Einstemian. QE.D

Remark 3. Theorem A is an improvement of Theorem 3.2 in [3]. For $p=0$ this theorem was studied in [5]. Theorem B for $p=1,2$ was also studied in [7] and [8] respectively.

References

[1] T. H. Kang and J S. Pak, Some remarks for the spectrum of the p-Laplacian on Sasakıan manrfolds, J Korean Math.Soc 32(2) (1995), 341-350.
[2] V. K. Patod, Curvature and the fundamental solution of the heat operator, J. Indian Math. Soc. 34 (1970).
[3] M. Puta and A. Torok, On the spectrum of the Laplaczan on p-forms, An. Univ. Tımisoara serıa st. matematice XXV, 67-73.
[4] _ The spectrum of the p-Laplaczan on Kahler manafold, Rendiconti di Matematica 11 (1991), Serie VII, Roma, 257-271.
[5] T. Sakai, On eigenvalues of Laplacian and curvature of Riemannian manzfold, Tôhoku Math J. 23, 589-603
[6] S Tanno, Eingenvalues of the Laplacıan of Rzemannzan manzfolds, Tôhoku Math. J. 25, 391-403.
[7] , The spectrum of the Laplacian for 1-forms, Proc. of A M.S. 45, 125129
[8] Gr. Tsagas, On the spectrum of the Laplace operator for the exterior 2-forms, Tensor, N S. 33, 94-96

Department of Mathematics
University of Ulsan
Ulsan 680-749, Korea

