Axial Fatigue Behavior of Structural Cables

Suh, Jeong In Chang, Sung Pil

ABSTRACT: This study was planned to verify the usefulness of Latin square design method in fatigue tests of cables and to see the axial fatigue behavior of wire ropes being used as hangers in suspension bridges. Three parameters: mean stress, stress range, and specimen length, were adopted for verification. The effects of these parameters are in argument except for stress range. Three classes in each parameter were used. Triple replication was performed in each cell to increase the number of replication (or degree of freedoms). The major cause of fatigue failure was fretting fatigue at trellis contact point. Three chosen parameters were proved to be significant. It was verified that the effect of stress range was in agreement with expectation, but the effect of specimen length was contrary to the expectation. It was also observed that the effect of mean stress depended upon the chosen level. Therefore Latin square design method is effective for verifying the parameters that affect fatigue behaviour under orthogonality conditions.

KEYWORDS: Cable, Wire Rope, Latin Square Design, Fretting Fatigue, Orthogonality
1. 서론

케이블은 현재 대해서는 무시할 만큼 작은 저항성을 지닌 유연한 인장부재이다. 케이블은 또한 높은 중량 대비 강도를 지니고 있고, 다양한 분야에 적용되는 부재이다. 최근 들어 해양 및 육상 구조물에 사용하기 위해 케이블 로프와 스트레트의 인장파로에 대한 관심이 있으나, 강재 케이블은 현수교에서 행해와 케이블로서, 사장교에서는 사장재 케이블로서 사용되고 있다. 케이블 구조물의 설계에서 주기적인 하중에 서의 케이블의 피로 저항성을 중요하게 취급하고 있다. 모든 구조물은 비록 어떤 구조물에서는 하중변동범위가 무시할 만큼 작지만 이는, 여러 형태의 주기를 주기한 하중을 받게 된다. 케이블 지지 교량에서의 피로 저항의 주요 원인은 트력 또는 열차에 의해 발생하는 일반변동범위이다. 이러한 주기적인 하중은 케이블의 내구성을 동안에 점과 될 것이다.

차량에 의해 발생하는 응력범위의 크기는 교량을 통과하는 트럭이나 열차의 중량뿐만 아니라 보강형이나 바닥판의 자중에도 좌우된다. 중량이 큰 보강형이나 바닥판은 큰 컴퓨터를 요구하게 된다. 일반적으로 현수교는 강재 보강형으로, 사장교는 케이블 보강형으로 되어 있다. 따라서 행해에서의 응력범위가 사장교의 사체에서의 응력범위보다 크다. 그러므로 차량의 비중도 행해에서 더 크다.

영국의 세번협수교(Severn Suspension Bridge)의 경사행이시스템은 연직으로 된 행해로 된 전통의 현수교에서는 없는 트리스 역할을 담당한다. 결과적으로 통과 차량에 의해 발생하는 응력범위는 중량정신에서 상대적으로 크다. 그러므로 피로 문제는 다른 부재에서보다 행해에서 발생할 가능성이 크다 하겠다.

현재 건설 중인 영중대교의 중량정신에서의 가장 짧은 행해는 직경 84mm로 소켓과 소켓사이의 길이가 7.2m 정도로 단지 13 lay length(피치) 밖에 되지 않는다. 대개 10배의 lay length을 단부 효과를 합리적으로 배제할 수 있는 바람직한 길이라고 연구자들은 밝히고 있다. 이 길이의 소켓까지의 길이기 때문에 최소길이를 규정하는 일이 필요하다고 하겠다.

이 실험은 또한 평균응력의 크기를 규명하는 데에도 초점을 두었다. 실험은 다양한 실험계획법을 조사하여 정해진 측면을 고려하여 채택하였다.

2. 배경

파로시험에서 왜이어 로프는 일반적으로 일정 전측의 사인(sine) 곡선 형태의 하중을 받게 된다. 응력범위와 평균응력수준 외에 피로격차에 영향을 미치는 많은 인자들이 있는데, 이들은 다음과 같다. 케이블 형태, 강선의 규격, 강선의 품질, 유통 제, 피로 과정의 규준, 사전하중의 크기, 단부의 형태와 품질, 실험하중제주기, 시변의 길이 등이다.

플레밍(Fleming)은 직접적인, 주기적인 인장 하중 하에서 구조용 스트레트의 피로 특성을 규명하기 위하여 실험을 수행하였다. 그는 하중변동기가 증가함에 따라 피로 수명이 감소한다고 보고하였으나, 이에 덧붙여 최대 또는 최소 하중의 효과는 인장강도의 90%까지도 영향이 거의 없는 것으로 보고하였다. 홀스와 가바미(Hobbs and Ghavami)는 최소응력으로 공정 극한강도(S_min)의 10%와 30%로, 다른 임의적인 S_m(평균응력)과 R을 사용하였다. 여기서 R은 R = (S_min/S_max)로 정의한다. 그들은 측면방향 피로수명이 평균응력방향 하중에 거의 독립적인 것으로 보고하였다. 그러나 그들의 주장은 다른 연구자들의 실험결과의 의해 입증되지 못했다. 다른 연구 결과는 케이블의 측면방향 피로수명은 응력범위뿐만 아니라 응력수준의 함수로 밝히고 있다. 적어도 현재로서는 케이블의 피로 과정의 정의가 다소 임의적이다. 곳랜드(Goodman)와 거버(Gerber)의 도표는 다양한
평균하중 하에서 보통 시편의 축방향 피로 데이터를 보여주는 데에 유용하게 사용된다. 그러나 이것도 케이블의 피로에 대해서는 제대로 설명하지 못하고 있다.

1992년 스페인에서 개최된 IABSE 위크숍은 케이블에 대한 피로실험에서 길이효과라는 아주 특정한 의문을 주제로 하였다. 그 때까지 대부분의 연구자들은 시편의 길이가 피로의 6배 이상일 경우의 실험 결과를 받아들여 왔다. 그러나 시편길이에 대한 이론이 있었다. 체플린(Chaplin)은 매우 짧은 로프의 인장파괴에서 길이효과는 무의미하다고 보고하였다. 치엔(Chien)은 실스트랜드(Seale Strand) 형태의 와이어 로프에서 유효길이(effective length)는 피치의 1.18배라고 제시하였다. 유효길이는 회복길이(recovery length)라고도 하는데, 케이블에서 파查看详情 감선이 인접 감선의 마찰력에 의해 하중을 완전히 부담하게 되는 길이로 정의된다. 따라서 최소시편길이는 이론적으로 계산하면 로프 피치의 2.36배보다 길어야만 한다. 그러나 와이어(Wyatt)는 단부효과 영향부가 케이블 길이의 약 15%, 즉 각각의 끝으로부터 피치의 2.6배라는 것을 발견하였다. 그러므로 피치의 5배 길이는 단부효과로부터 자유로운, 중앙부분을 갖지 않는 길이이다. 파파니콜라스(Papanikolas)는 다중의 스트랜드에 대해서는 피치의 8배 길이가, 라우프(Rauro)와 헤브스(Hobbs)는 10배의 길이가 최소의 바람직한 길이라고 제시하였다.

충사이의 강선 간의 접촉성 피로(fretting fatigue)가 변동하중을 받는 스트랜드 형태 케이블의 피로파괴의 기본적인 메커니즘임이 일반적으로 받아들여져 왔다. 그러므로 내부파관을 발견하는 능력이 피로실험 시나 공용 시에 케이블의 성능을 평가할 때 중요하다. 워드워드(Woodward)는 직경 35mm에서 70mm의 와이어 로프와 다중의 스트랜드, 목록호일(locked coil)의 피로 상태를 관찰하기 위하여 AE(Acoustic Emission) 기법을 사용하였다. 전체 강선 파편의 개수에 대한 사항(Acoustic Event)의 평균 비율은 다중 스트랜드의 경우에는 0.99. 로프는 0.38이고, 목록호일은 2.43이었다. 따라서 AE기계는 목록, 목록과 와이어 로프에 대해서는 성공적이 못했다. 다음 AE기계는 초기 케이블레이선이 필요하고, 잠금의 제거를 위한 필터링. 강선이 파단될 때의 사건을 추적하기 위한 특별한 소프트웨어가 필요하므로 매우 복잡하다. 가속도계를 사용하면 강선의 파단을 쉽게 알 수 있다. 가속도계는 가속도에 비례하는 전기적 출력을 주는 전기기계적 변환기이다. 이전의 연구 결과는 가속도계가 강선의 파단을 인지하는 데에 적합함을 보여준다. 정적실험은 현재의 강성으로 알기 위하여 사용되었다. 강성은 가속도계나 AE기계를 사용할 때처럼 강선 파단의 순간을 인지할 수는 없지만 피로 손상의 척도가 될 수 있다.

3. 실험 설계

일반적으로 기술자들은 실험을 계획할 때에 적판에 의존하는 경향이 있다. 실험을 하는 기본적인 이유는 아직 알려지지 않은 어떤 것을 발견하는 데에 있다. 실험이 적은 횟수의 실험결과로부터 전체에 대한 추론을 하도록 설계된다. 그러므로 실험을 적합하게 설계한다면 좋은 결과를 기대할 수 있다. 구조용 케이블의 피로 거동에 영향을 미치는 많은 요인들이 있다. 그러므로 실험의 각 단위는 각 요인의 효과를 검출하는 데에 필요하다. 유강스럽게도 시간과 비용 문제가 실험을 계획할 때에 반드시 고려되어야 한다.

3.1 피로 실험의 기본 원칙

피로 실험을 계획하는 데에는 6가지의 기본 원칙이 있다. 이 6가지 기본원칙은 반복, 렌덤화, 불복, 시편의 할당, 경량적인 인자 수준의 간격의 평형화와 요인배치(또는 직교성의 사용)이다. 각각을 설명하면 다음과 같다.
(1) 반복의 목적이 실험오차를 예측할 수 있게 하는데 있다. 즉 데이터의 편차를 통계적으로
예측하는 것이다. 반복의 횟수를 증가시킴으로써 정밀도를 개선시킬 수 있다.
(2) 통계적분을 적용하는 데에는 항상 랜덤 표
본을 가정한다.
(3) 이질적인 처리나 실험 동안 환경이나 시간
에 따른 변화에 의한 바람직하지 않은 변동성을
고려 또는 제거하기 위하여 실험 프로그램에서 블
록화를 사용한다.
(4) 2개 이상의 정량적인 처리 효과를 비교할
때, 예측의 정도는 일반적으로 각 효과에 대한 시
편의 개수를 갈색 함으로써 극대화될 수 있다.
(5) 효과의 여부를 보기 위하여 정량적인 처리
효과의 경우에는 간격을 광역화하여야 한다. 선형
인 경우에는 효과의 보다 정확한 예측을 위하여
사용한다.
(6) 다양한 처리 효과의 독립적인 예측과 그들
의 교호작용이 실험을 통해 얻을 수 있어야 한다.
요인매치의 방법이 이러한 성질을 가지고 있다.

3.2 랜덤방법

많은 실험 계획법이 있는데, 이 중에서 실험 목
적에 적합한 방법을 선택하는 것이 필요하다. 예
를 들어서 각 블록화된 변수와 관련된 변동에서
실험오차를 제거하기 위하여 랜덤화된 완전 블록
계획에서 2개의 블록 변수를 동시에 사용하는 것
이 가능하다. 완전블록계획에서 2개의 블록 변수
를 전부 다 사용하는 것은 너무 많은 실험량을
필요로 한다. 비용으로 이런 것이 불가능할
수도 있다. 그러나 실험오차의 분산을 충분히 줄
이고, 실험주제가 할당적인 다양성을 갖도록 하기
위해서 여전히 정도와 변동범위를 고려할 필요가
있을 수 있다. 이런 상황 하에서는 불완전 블록
계획이 유용할 수도 있다. 그런 설계에서는 두 블
록 변수의 모든 블록이 사용될 수 있다. 그러나
각 블록이 모든 처리를 포함하지는 않는다. 그런
한 설계가 바로 랜덤방법이다. 이런 점토를 결
쳐서 본 연구에서는 랜덤방법을 채택하였다.
랜덤방법은 다음과 같은 특징을 가지고 있다.
(1) \(r\)을 실험의 자유도라고 할 때, \(r\)개의 처리
을 갖고 있다.
(2) 2개의 블록 변수를 갖는다. 각각은 \(r\)개의
동급을 갖고 있다.
(3) 설계 랜덤에서 각 행과 열은 모든 처리
을 포함하고 있다. 즉 각 블록 변수의 동급은 반
복을 구성한다.
랜덤방법은 다음과 같은 장점이 있다.
(1) 두 블록 변수의 사용은 종종 하나의 블록
변수만을 사용할 때의 실험오차의 변동성을 크게
줄일 수 있다.
(2) 처리 효과의 소규모 실험으로부터 얻을 수 있다.
(3) 처리의 순서 효과를 고려하는 반복적인 측
정 실험에 종종 유용하다.
그러나 다음과 같은 단점을 또한 내포하고 있다.
(1) 각 블록 변수의 동급의 개수가 처리의 개
수와 같아야 한다.
(2) 모델의 가정이 제한적이다. 즉, 블록 변
수나 처리 사이의 교호작용이 검출되지 못한다.
(3) 블록 변수들간 다른 동급의 개수를 가질
수 없다.
(4) 랜덤화에 대한 요구 조건이 다른 실험 계
획법에 비해 까다롭다.
랜덤방법은 3개의 변수 사이에 교호작용이
없다고 가정하는 모델로서, 가법 모델이다. 고정원
처리와 블록 효과의 경우에 모델은 다음과 같다.

\[Y_{ijk} = \mu + \rho_i + \tau_j + \epsilon_{ijk} \]

\(\rho_i\)는 행하복변수의 주요 효과, \(x_j\)는 열하복변수의 주요 효과이고, 처리효과는 \(\tau\)이다. 여기서 \(\mu\)는 상수이고, \(\rho_i, x_j, \tau_k\)는 \(\sum \rho_i = \sum x_j = \sum \tau_k = 0\)과 같은 제한을 갖고 있는 상수이다.
\(\epsilon_{ijk}\)는 \(N(0, \sigma^2)\)의 분포를 갖는다. \(i, j, k\)는 1
에서 \(r \)의 차원을 갖는다.

라틴방범법은 각 처리마다 \(r \)번의 반복 횟수를 갖는다. 이들을 합쳐 모든 처리와 반복 횟수는 각 셀 내의 반복을 수행하여 반복 횟수를 증가시킨다. \(F \) 검정이 처리효과를 조사하기 위해 수행된다.

3.3 하중재현비와 실험 설비

실험은 현대건설기술연구소에 설치되어 있는 서보 타입 동적 가속기와 MTS사에서 만든 Flex IIIm 시스템을 사용하여 수행되었다. 실험설비를 그림 1에 보였다. 이 설비는 임의의 케이블 길이를 수용할 수 있도록 베이스 프레임의 어느 위치 에나 놓일 수 있다. 수평으로 놓인 시편은 가속기를 하중재현 모드로 제어하여 제자리하였다. 가속기는 500kN의 용량과 250mm의 스프로크를 갖고 있다. 가동단부의 하중재현관은 실험을 하는 동안 에 로프의 비틀림에 의해 발생하는 회전을 방지하기 위하여 사용된다.

![그림 1. 케이블 피로 실험 설비](image)

3.4 데이터의 획득

극한인장강도의 80%에 상응하는 한번의 초기 과재하중을 시편의 단부가 소켓에 완전히 밀착되도록 하기 위해 제하하였다. 일정 간격의 장

(sine) 곡선 형태의 주기 하중을 일정한 평균하 중까지 제한한 후 제하를 시작한다. 축방향 피로 실험을 하는 동안 하중범위, 장적하중, 하중재현 횟수, 제하속도를 실험 시스템의 제어판으로부터 직접 입력한다. 시편의 강성 손실을 일정 간격으로 정적 시험을 함으로써 결정하는데, 본 실험에서는 1000번마다 한번씩 측정하였다. 이 때 정적 시험 은 최소와 최대 하중 사이에서 수행하였다. 정적 시험 시에 취득된 데이터는 시험을 실행 당시의 하중재현횟수와 하중의 크기, 위치를 정적 시편의 준비

3.5 실험 시편의 준비

소켓팅은 롤드 내에서 부채살 모양으로 펼쳐진 케이블의 주위에 고온으로 가열한 정착 재료를 부음으로써 행해진다. 전통적인 소켓팅 재료는 고온 의 액체 상태의 순수 아연으로 구성된다. 사용된 시편에 대한 세부는 표 1에 보여져 있다. 시편의 구분은 LS10_20-1과 같은 형태로 주어져 있는데, 여기서 10, 20, 1은 각각 시편의 길이, 응력범 위, 같은 종류의 실험 순서를 나타낸다.

<table>
<thead>
<tr>
<th>표 1. 실험에 사용된 시편의 규격</th>
</tr>
</thead>
<tbody>
<tr>
<td>로프의 형태</td>
</tr>
<tr>
<td>실제 로프 직경</td>
</tr>
<tr>
<td>실제 단면적</td>
</tr>
<tr>
<td>로프의 피치</td>
</tr>
<tr>
<td>실제 인장강도</td>
</tr>
<tr>
<td>실제 파단력</td>
</tr>
</tbody>
</table>

3.6 실험에 사용된 라틴방범

본 실험에 사용된 3개의 요인은 평균응력수준, 응력범위, 시편의 길이이다. 많은 라틴방범 중에서 채택된 라틴방범은 다음과 같다.
여기서,
\(A_i \) (\(i = 1, 2, 3 \)) : 각각 10, 20, 30 배의 lay length.
\(B_i \) (\(i = 1, 2, 3 \)) : 각각 15%, 40%, 65%의 UTS에 해당하는 평균응력 수준.
\(C_i \) (\(i = 1, 2, 3 \)) : 각각 20%, 24%, 28%의 UTS에 해당하는 응력범위이다.
각 셀(cell) 내에서 자유도를 증가시키기 위해 3번의 반복을 수행하였다.

4. 결과와 논의

하중재하 속도는 4Hz 범위 내로 하여, 로프의 외부 온도가 실험하는 동안 35℃ 내로 유지되도록 하였다. 실험하는 동안 시험의 온도 변화를 관찰하였다. 그림 2와 3에 하중재하속도를 4Hz와

그림 3. 하중재하속도 2.5Hz에서의 시편의 온도 변화
2.5Hz로 했을 때의 시편의 온도에 있어서 최대 온도차를 나타낸 경우를 보여주고 있다. 시편이 4.0Hz와 2.5Hz로 재하하였을 때의 최대 온도차는 각각 8.5℃와 6.2℃이었다. 이 온도차는 실험실의 온도와 하중재하속도에 기인하는 것으로 관찰되었다. 스트랜드의 종 사이의 점착점에서의 온도는 측정한 것보다 더 높음을 것으로 예상되지만, 적당한 장치가 없어 로프 내부의 온도를 측정할 수 없었기 때문에, 시편의 외부 온도만을 기록하였다. 하중재하속도가 2.5Hz에서 4.0Hz의 범위에 있을지라도, 하중재하속도가 시편의 피로거동에 크게 영향을 미쳤다는건 생각되지 않는다.

에스링거(Esslinger)는 600MPa에서 800MPa의 높은 응력범위에서 150mm 길이의 강선을 사용하여 실험을 수행하였다. 그 결과는 하중재하속도에 매우 민감한 결과를 나타냈다. 시편이 매우 높은 응력범위에서 실험되었기 때문에 이런 결과를 예측할 수 있었다. 이는 각 하중재하속도에서 나타난 큰 소성변형 범위가 피로수명을 더 짧게 했다는 것을 의미한다. 이런 효과는 응력범위가 피로 한도에 접근할 때에 나타날 것이다. 본 실험이의 하중재하속도는 하중재하속도와 응력범위가 크게 달라져서 시편의 피로거동에 영향을 거의 미치지 않았다고 판단할 수 있다.
강성의 변화, 주기적 변위(cyclic displacement). 과도의 신장장으로 실형 결과를 기록하였 다. 강성의 파편 위치는 실험이 끝난 후에 시편을 해체함으로써 기록하였다. 해체 결과를 표 2에 나 타냈다. 표에서 #1, #2, ...는 가동부로부터 순서 를 부여하였다. 강성의 파편은 다소간 차이는 있 지만, 단부와 자유장 부분에서 고르게 분포하였 다. 대부분의 강성의 파편은 인접 스트랜드 사이 에서 일어났다. 이 격자점에서의 접촉성 피로 (fretting fatigue)가 왜이어로프의 주요 피로

<table>
<thead>
<tr>
<th>구분</th>
<th>하중재하수</th>
<th>해체</th>
<th>#1</th>
<th>#2</th>
<th>#3</th>
<th>#4</th>
<th>#5</th>
</tr>
</thead>
<tbody>
<tr>
<td>LS10.20-1</td>
<td>378,000</td>
<td>전</td>
<td>5</td>
<td>9</td>
<td>2</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>후</td>
<td>강연성</td>
<td>13</td>
<td>16</td>
<td>8</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>IWR</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>LS10.24-1</td>
<td>480,600</td>
<td>전</td>
<td>1</td>
<td>4</td>
<td>10</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>후</td>
<td>강연성</td>
<td>38</td>
<td>24</td>
<td>18</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>IWR</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>LS10.28-1</td>
<td>761,000</td>
<td>전</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>후</td>
<td>강연성</td>
<td>38</td>
<td>24</td>
<td>18</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>IWR</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>LS10.28-2</td>
<td>3,000,000</td>
<td>전</td>
<td>0</td>
<td>3</td>
<td>7</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>후</td>
<td>강연성</td>
<td>2</td>
<td>3</td>
<td>23</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>IWR</td>
<td>35</td>
<td>7</td>
<td>49</td>
<td>42</td>
</tr>
<tr>
<td>LS10.28-3</td>
<td>495,000</td>
<td>전</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>후</td>
<td>강연성</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>IWR</td>
<td>18</td>
<td>16</td>
<td>16</td>
<td>3</td>
</tr>
<tr>
<td>LS20.20-1</td>
<td>4,600,000</td>
<td>전</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>후</td>
<td>강연성</td>
<td>8</td>
<td>7</td>
<td>10</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>IWR</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>LS20.20-2</td>
<td>3,000,000</td>
<td>전</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>후</td>
<td>강연성</td>
<td>3</td>
<td>4</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>IWR</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>LS20.24-1</td>
<td>280,200</td>
<td>전</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>후</td>
<td>강연성</td>
<td>48</td>
<td>74</td>
<td>34</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>IWR</td>
<td>49</td>
<td>4</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>LS20.24-2</td>
<td>673,300</td>
<td>전</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>후</td>
<td>강연성</td>
<td>12</td>
<td>11</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>LS20.28-1</td>
<td>320,300</td>
<td>전</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>후</td>
<td>강연성</td>
<td>123</td>
<td>147</td>
<td>87</td>
<td>132</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>IWR</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>LS30.20-1</td>
<td>17,000,000</td>
<td>전</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>후</td>
<td>강연성</td>
<td>1</td>
<td>6</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>IWR</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>LS30.20-2</td>
<td>6,000,000</td>
<td>전</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>후</td>
<td>강연성</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>IWR</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>LS30.20-3</td>
<td>12,500,000</td>
<td>전</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>후</td>
<td>강연성</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>IWR</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>LS30.24-1</td>
<td>2,000,000</td>
<td>후</td>
<td>강연성</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>IWR</td>
<td>7</td>
<td>12</td>
<td>11</td>
<td>7</td>
</tr>
</tbody>
</table>
파괴원인은 알 수 있었다. 적은 개수의 강성이 파탄된 시편의 경우, 초기 강성이 파탄이 단부에 집중되지 않음을 관찰할 수 있었다. 그리므로 실험에서 얻은 모든 결과를 데이터의 평가에 사용할 수 있었다. 외부 표면의 강성이 파탄 개수가 와이어로프의 피로파괴 규준으로 사용되어 왔다. 그러나 강성의 파탄 개수가 해체 전·후에 상당히 다르므로, 외부 표면의 강성 파탄 개수는 와이어로프의 피로파괴 규준이 될 수 없음을 의미한다.

시편의 강성 손실은 일정 간격으로 정적 시험을 행함으로써 알 수 있다. 본 실험에서 강성의 변화를 모니터링하기 위한 정적 시험은 1000번의 하중재하시마다 수행되었다. 대표적인 시험 결과는 그림 4와 5에 나타났다. 하중과 변위를 두 축으로 나타낸 그래프에서의 기울기가 로프의 강성이 되는데, 이는 선형 회귀분석을 수행하여 결정하였다. 첫번째 정적시험 전에 최대 피로하중까지 5번 재하하였다. 로프의 강성의 변화는 첫번째 정

그림 4(a). 시편 LS10_24-1의 강성 변화

그림 4(b). 시편 LS10_24-1의 주기적 변위 및 로프 신장량

그림 5(a). 시편 LS30_20-1의 강성 변화

그림 5(b). 시편 LS30_20-1의 주기적 변위 및 로프 신장량
직시험에서 얻은 값과의 비로 나타났다. 주기적 변위는 Flex II 시스템에 의해 얻은 주기적 변위를 초기 로프의 길이로 나눈 등각의 변형도로 표현하였다. 이 또한 첫번째의 정점시험에서 얻은 값과의 비로써 계시하였다. 이 때 초기 로프의 길이는 콘을 소켓에 완전히 밀착시키기 위하여 하중을 제한한 후에 측정된 길이를 사용하였다. 로프의 신장은 등각의 변형도로 환산하여 나타났다. 이 값은 최대변형도에 대한 비로써 계시되었다.

대부분의 경우에 강성은 실험이 진행됨에 따라 상당한 손실이 일어났는데, 이런 경향이 피로파괴 규준을 유도하기 위한 손상의 적도로서 사용될 수 있다. 강성의 손실에도 불구하고 몇몇의 시험은 강성이 빠르게 손실되는 모양을 보여주는 결과를 얻지 못하였는데, 이는 가격기의파괴 후에 충분한 정적시험을 행할 수 있을만큼의 충분한 스트로크를 갖지 못하였기 때문이다. 이에 덧붙여 3개의 시리즈에서는 강성이 동시에 파단되는 모습을 보여주지 않았다. 이는 시험인이 강선의 파단과 더불어 강성의 손실이 일어나기 때문이다. 최대 피로 하중이 증가함에 따라 외측에서 내부의 강선을 조이는 힘(clenching force)이 증가된다. 그러므로 비교적 큰 최대피로하중을 받는 시험의 경우에는 강선이 하나 파단되었을 때 끝 바로 강성의 손실로 이어지지 않았다. 그러나 비교적 낮은 최대 피로 하중이 작용하는 경우에는 끝 바른 강성의 손실로 이어졌다. 또한 강선과 소켓링 제로 사이의 미끄러짐을 보고 위하여 소켓링 상태를 점검하였는데, 특별한 징후를 보여 주지 않았다.

시험 LS30 24-3은 실험 완료 후에 IWRC (Independent Wire Rope Core)에서 오직 하나의 강선만이 파단되었다. 역사적으로 5%에 해당하는 개수의 강선의 파단을 많은 연구자들이 피로파괴규준으로 사용하였다. 이전에 언급한 바와 같이, 매우 작은 강선으로 이루어진 IWRC에만 파단이 발생한 경우가 있었다. 추가적으로 하나의 동일한 강선에 여러 번의 파단이 발생하는 현상이 있었다. 그러므로 5% 강선의 파단을 피로파괴규준으로 고려하는 것은 불합리하다고 생각된다. 5% 강선의 파단을 규준으로 적용하는 것은 시험의 길이에도 초록한다. 예를 들어 100m 길이의 테이블에서의 5%의 강선의 파단이 2m 길이의 테이블에서의 5% 파단보다 덜 심각하다. 그러므로 강성의 손실이 충분히 피로파괴규준의 대안이 될 수 있다. 최대 강성과 완전 파괴 이전 또는 파괴 시에 체중한 강성과의 차이를 표 3에 제시하였다. 차이는 대부분 2%에서 10% 사이에 있다. 몇몇의 시험은 LS30 20 시리즈의 경우처럼 특별한 강성의 감소를 나타내지 않았다.

이 시리즈는 유한한 강성의 손실을 보여 주었다. 그러므로 데이터의 일관된 처리를 위한 기준이 필요하게 된다. 여기서는 실험 중에 보여 주는 최대 강성에서 10%의 강성 손실을 보이는 시점을 피로 파괴의 규준으로 삼았다. 이 규준은 실험이 언제든 모든 데이터를 평가에 사용할 수 있고, 안전측에 위치하기 때문에 합리적인 것으로 생각된다. 표 3에 보여 준 피로 파괴 시까지의 하중치하트수는 10%의 강성 손실에 해당한다. 본 연구에서 고려된 주요 인자는 응력 범위, 평균응력수준과 시험의 길이이다.

실험 결과는 피로수명에 도구를 취하여 분석하였다. 첫째로, 사용된 가법 모델이 적합하나 보이기 위하여 F검정을 수행하였다. 여기서 0.01의 신뢰수준에서 F값이 6.01보다 작기 때문에, 가법 모델이 적합함을 확인할 수 있었다. 이 모델은 실험결과를 결정계수 0.82의 값을 가지고 대표하고 있다. 왜이어로프의 피로수명(로그를 취한 값)은 콜모고로브-스미로프(Kolmogorov-Smirnov) 검정에서 8.2%의 신뢰 수준에서 정규분포에 의해 표현될 수 있음을 확인할 수 있었다. 그러므로 왜이어로프의 피로 수명은 대수-정규분포에 의해 합리적으로 모델링될 수 있다.

비록 실험결과가 응력수준과 응력범위 사이의 교호작용이 예상해졌더라도, 3개의 인자들은 모두 유의한 것으로 판명되었다. 각 인자에 대한 F값은 표 4에 주어져 있다.
표 3. 시편의 피로수명

<table>
<thead>
<tr>
<th>구분</th>
<th>검정 차</th>
<th>피로수명</th>
<th>긴이</th>
<th>평균응력</th>
<th>응력범위(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LS10.20-1</td>
<td>6.5%</td>
<td>374,000</td>
<td>10</td>
<td>65%</td>
<td>20%</td>
</tr>
<tr>
<td>LS10.20-2</td>
<td>3.1%</td>
<td>577,000</td>
<td>10</td>
<td>40%</td>
<td>24%</td>
</tr>
<tr>
<td>LS10.20-3</td>
<td>6.0%</td>
<td>939,000</td>
<td>10</td>
<td>15%</td>
<td>28%</td>
</tr>
<tr>
<td>LS10.24-1</td>
<td>7.2%</td>
<td>489,000</td>
<td>10</td>
<td>65%</td>
<td>20%</td>
</tr>
<tr>
<td>LS10.24-2</td>
<td>7.4%</td>
<td>501,000</td>
<td>10</td>
<td>40%</td>
<td>24%</td>
</tr>
<tr>
<td>LS10.24-3</td>
<td>9.1%</td>
<td>761,000</td>
<td>10</td>
<td>15%</td>
<td>28%</td>
</tr>
<tr>
<td>LS10.28-1</td>
<td>20.8%</td>
<td>1,869,000</td>
<td>10</td>
<td>65%</td>
<td>20%</td>
</tr>
<tr>
<td>LS10.28-2</td>
<td>10.0%</td>
<td>372,000</td>
<td>10</td>
<td>40%</td>
<td>28%</td>
</tr>
<tr>
<td>LS10.28-3</td>
<td>18.5%</td>
<td>289,000</td>
<td>10</td>
<td>15%</td>
<td>20%</td>
</tr>
<tr>
<td>LS20.20-1</td>
<td>13.3%</td>
<td>4,196,000</td>
<td>20</td>
<td>65%</td>
<td>20%</td>
</tr>
<tr>
<td>LS20.20-2</td>
<td>10.9%</td>
<td>2,856,000</td>
<td>20</td>
<td>40%</td>
<td>28%</td>
</tr>
<tr>
<td>LS20.20-3</td>
<td>10.9%</td>
<td>2,816,000</td>
<td>20</td>
<td>15%</td>
<td>20%</td>
</tr>
<tr>
<td>LS20.24-1</td>
<td>2.9%</td>
<td>280,000</td>
<td>20</td>
<td>65%</td>
<td>24%</td>
</tr>
<tr>
<td>LS20.24-2</td>
<td>3.6%</td>
<td>673,000</td>
<td>20</td>
<td>40%</td>
<td>28%</td>
</tr>
<tr>
<td>LS20.24-3</td>
<td>3.7%</td>
<td>316,000</td>
<td>20</td>
<td>15%</td>
<td>20%</td>
</tr>
<tr>
<td>LS20.28-1</td>
<td>9.1%</td>
<td>319,000</td>
<td>20</td>
<td>65%</td>
<td>20%</td>
</tr>
<tr>
<td>LS20.28-2</td>
<td>9.0%</td>
<td>304,000</td>
<td>20</td>
<td>40%</td>
<td>28%</td>
</tr>
<tr>
<td>LS20.28-3</td>
<td>10.0%</td>
<td>402,000</td>
<td>20</td>
<td>15%</td>
<td>20%</td>
</tr>
<tr>
<td>LS30.20-1</td>
<td>10.2%</td>
<td>16,836,000</td>
<td>30</td>
<td>65%</td>
<td>20%</td>
</tr>
<tr>
<td>LS30.20-2</td>
<td>10.1%</td>
<td>5,865,000</td>
<td>30</td>
<td>40%</td>
<td>28%</td>
</tr>
<tr>
<td>LS30.20-3</td>
<td>10.2%</td>
<td>12,434,000</td>
<td>30</td>
<td>15%</td>
<td>20%</td>
</tr>
<tr>
<td>LS30.24-1</td>
<td>13.0%</td>
<td>1,894,000</td>
<td>30</td>
<td>65%</td>
<td>20%</td>
</tr>
<tr>
<td>LS30.24-2</td>
<td>26.0%</td>
<td>1,528,000</td>
<td>30</td>
<td>40%</td>
<td>28%</td>
</tr>
<tr>
<td>LS30.24-3</td>
<td>13.1%</td>
<td>632,000</td>
<td>30</td>
<td>15%</td>
<td>20%</td>
</tr>
<tr>
<td>LS30.28-1</td>
<td>2.0%</td>
<td>273,000</td>
<td>30</td>
<td>65%</td>
<td>20%</td>
</tr>
<tr>
<td>LS30.28-2</td>
<td>3.7%</td>
<td>419,000</td>
<td>30</td>
<td>40%</td>
<td>28%</td>
</tr>
<tr>
<td>LS30.28-3</td>
<td>2.0%</td>
<td>401,000</td>
<td>30</td>
<td>15%</td>
<td>20%</td>
</tr>
</tbody>
</table>

그림 6. 길이효과

작업의 피로저항은 단부효과와 약한 연결교 관효과 (Weak-Link Effect)가 결합되어 나타난다고 할 수 있다. 이번의 실험결과에서 보면 기존의 연구 결과에서 언급된 단부의 영향이 더 확대되어야 한다는 것을 알 수 있다. 그러나 이에 대한 확실 한 결론을 내리기 위해서는 보다 많은 연구가 필요함을 알 수 있다.

평균응력수준효과는 평균응력이 증가함에 따라 피로 수명이 감소하려는 예상과 잘 일치하고 있다. 그런데 평균응력 15% UTS와 40% UTS 사이에서는 거의 차이가 없는 반면에 그림 7에서와 같이 65% UTS에서는 상당한 피로수명의 감소가 발생했다. 그러나 이 값은 실제 구조물에서는 거의 사용되지 않는 응력수준이다. 단지 실험전략상 사용된 값이다. 실험결과에 따라 평균응력수준이 15% UTS와 40% UTS 사이에서는 평균응력

표 4. 분산분석

<table>
<thead>
<tr>
<th>요구</th>
<th>자유도</th>
<th>Sum of Squares</th>
<th>Mean Square</th>
<th>F Value</th>
<th>P, ></th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>2</td>
<td>9.79387681</td>
<td>0.48993840</td>
<td>7.97</td>
<td>0.0029</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>2</td>
<td>1.30236773</td>
<td>0.65118387</td>
<td>10.59</td>
<td>0.0007</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>2</td>
<td>3.20058217</td>
<td>1.60029108</td>
<td>26.02</td>
<td>0.0001</td>
<td></td>
</tr>
</tbody>
</table>

그림 7. 평균응력수준효과

각 인자의 효과에 대한 상세 사항을 다음과 기술하였다. 길이 효과는 피로수명이 시편의 길이가 증가함에 따라 감소하려는 예상과는 반대의 결과를 보여 주었다. 이 결과를 그림 6에 나타냈다. 시편의 길이가 증가함에 따라 상당한 피로수명의 증가를 볼 수 있다. 실험결과로부터 짧은 길이의 시편들은 실험 후에 시험을 해체한 결과에서 확실한 증거를 보여주지 않고 있음을라도, 단부의 영향을 많이 받고 있을음을 예측할 수 있다. 분산효과 또한 이유가 될 수 있다. 주 와이어 로프의 전체
수준효과를 배제할 수 있음을 확인할 수 있다. 이 결과는 평균응력수준이 어느 범위 이내에 있을 경우 평균응력의 효과가 검출될 수 없음을 입증한다. 그리고 이 또한 실험에 따른 오류 데이터의 구름화를 가능하게 한다. 그러나 이 또한 그룹화를 위한 평균응력수준의 한계를 갖기 위하여 보다 많은 실험이 요구된다.

응력범위효과는 그림 8에 보여준 것처럼 매우 두드러진다. 이는 폐로설계 시에 가장 흔히 사용되고 있는 S-N 곡선의 효용성을 보여준다고 하겠다. 실험결과에서 보는 것처럼 응력범위 20% UTS에서의 피로수명이 아주 크게 증가하기 때문에 피로한계(Fatigue limit)의 존재 가능성을 내포하고 있다고 할 수 있다. 이는 곡선이 위에 오목하게 보이는 형태에서도 예측될 수 있다.

![그림 8. 응력범위효과](image)

5. 결론

(1) 자유장 내에서의 강산의 파탄은 각 스트랜드 사이의 격자 접촉점에서의 구부려진 접촉성파로(fretting fatigue)의 결과이다.

(2) 평균응력수준의 효과가 유의한 것으로 나타났지만, 15% UTS와 40% UTS 사이에는 거의 차이를 보이지 않는다.

(3) 길이효과는 시편의 길이가 증가할 때 피로 수명이 감소하리라는 초기 예상과 다른 결과를 나타냈다. 따라서 단부효과가 배제될 수 있는 최소 시편의 길이를 검출하는 데에 보다 많은 실험이 필요하다.

(4) 응력범위효과가 왜이어로프의 피로성능에 가장 유의하다. 이는 S-N 곡선이 실험 시편의 단부효과를 배제할 수 있는 결과에서 유도되었다. 실험에서 매우 유용하게 사용될 수 있음을 검증하고 있다.

(5) 본 연구에서 채택된 라틴방법은 각 인자들간에 상호작용이 미묘하도록 한다면, 비용과 시간을 절감할 수 있는 방법이기 때문에 피로실험에 아주 유용한 방법이다.

감사의 말

본 연구는 POSCO 석탄 교수 연구 기금 지원에 의해 수행된 연구임을 밝합니다. 기금을 지원해 주신 POSCO, 실험에 협조해주신 현대건설 기술연구소, 고려대에 감사의 말씀을 전합니다.

참고 문헌

(2) Fleming, J.F. ‘Fatigue of cables,’ Research Report No. SETEC CE 74-079 for the American Iron & Steel Institute, School of Engineering, University of Pittsburgh, 1974

(5) Chien, C. and Costello, G.A. ‘Effective

(6) Wyatt, T. A. 'Internal damping in 38mm (nominal) specimens.' Imperial College, Department of Civil Engineering, CESLIC Report SC2, 1978

(13) Esslinger, V. 'Experimental execution and results of fatigue test with prestressing steel.' Proceedings of IABSE, Vol. 66, Spain, 1992

(14) 서정인. 구조용 로프의 피로가동. 서울대학교 공학박사 학위논문, 1998

(접수일자 : 1998년 8월 28일)