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Abstract In this short note we study the torsion theories over a com-
mutative ring R and discuss a relative dimension related to such theories for
R-modules. Let o be a torsion functor and (T, F) be its corresponding parti-
tion of Spec(R). The concept of o-Cohen Macaulay (abbr. ¢-CM) module is
defined and some of the main points concerning the usual Cohen-Macaulay
modules are extended. In particular it is shown that if M is a non-zero o-
CM module over R and § is a multiplicatively closed subset of R such that,
for all minimal element of T, SNp = 0, then 5~ M is a §~1o-CM mod-
ule over S™1R, where S~1¢ is the direct image of o under the natural ring
homomorphism R — S~ 1R,

1. Introduction, notation and some properties of o-
depth

Cohen-Macaulay modules play an important role in the study
of commutative algebra and some various attempts are appeared
in the litrature to generalize this concept (see [5]).

Throughout this note R will denote a commutative ring with
non-zero identity and o will be a torsion functor over R. Also,
(T, F) will be the corresponding partition of Spec(R) so that T' =
{p € Spec(R) : R/pis a torsion module} and F = Spec(R)\T.
The primes in T are called torsion primes, while those in F are
called torsion free primes (see [4, page, 73]). We also use Tp to
denote the set of minimal elements (primes) of T. Let R’ be
an another commutative ring and ¢ : R — R’ be a ring ho-
momorphism. We denote the direct image of ¢ under ¢ by o4
(see [4, section 3]). Let S be a multiplicatively closed subset of
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R. Then the direct image of o under the natural homomorphism
R — S~ 'R is denoted by S~ '0. In particular if S = R\p, for
some prime ideal p of R, then we denote S~'o by o(p).

DEFINITION 1.1. Let (7, F) be a torsion theory and M an R-
module. We define the (7, F)-dominant dimension of M, denoted
by (T, F)-dr(M), as the least integer n for which the n-th term
E™(M) in a minimal injective resolution for M is not torsion free,
if any such integers exist and oo otherwise (see[1, Definition 1.2]).

We shall see later (Corollary 1.5) that we can consider the
(T, F)-dominant dimension as a generalization of depth and we
denote it by o-depth, where o is the corresponding torsion functor
to the (7, F).

EXAMPLE 1.2. Let R = Z and G be a Z-module. Consider
the exact sequence 0 — G — E(G) — E(G)/a(G) — 0,
where E(G) is the injective envelope of G, so that E(G)/a(G) is
an injective Z-module. If G is a torsion free Z-module, then E(G)
is a torsion free Z-module and thus o_depth; G =1or co. If G is
not torsion free then E(G) is not torsion free and o_depth; G = 0.
Hence o_depth; G € {0, 1, c0}.

PrOPOSITION 1.3. Let 0 — M' — M — M" — 0 be an
exact sequence of R-modules and R-homomorphisms. Then one
of the following must hold:

(i) o-depthy M’ > o_depthy M = o.depthy M";

(ii) o_depthyr M > o_depthy M’ =1 + o_depthy M";

(iii) o-depthy M > o_depthy M = o_depthy M’;

Proof. Let n € Ny (Np, denotes the set of non negative integers)
and o_depthp M" =n + 1.
Case 1: o_depthyp M = n + 1. For any R-module N. We have

o.depthg N = inf{i € Ng: H*(N) # 0}

(see [2, Ch VI, Corollary 1.6]). The exact sequence 0 — M' —>
M — M"” — 0 induces the exact sequence

()  H7Y(M")— H (M) — H (M) — H(M").
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Foralli=0,1,...,n, Hi(M)= Hi(M")=0,thus H(M') =
Oforalli=0,1,...,n and o_depthgy M’ > n + 1.

Case 2: o_depthy M < n + 1. By the exact sequence (x) we
have H:(M)= H'!(M')foralli=0,1,...,n, thus c_depthy, M
= g.depthg M'.

Case 3: o.depthy M > n + 1. So that we have H:(M’') =
HiY(M") for i = 1,2,...,n+ 1. Thus H:{(M') = 0 for
i=0,1,...,n+ 1 and since the sequence 0 — H **}(M") —
H 7t2(M') is exact then H 7+3(M’') # 0, and o-depthy M’ =
n+ 2.

The cases o_depthy M" = 0 or oo are trivial.

COROLLARY 1.4. Let 0 — M' — M —> M"” — 0 be an
exact sequence of R-modules and R-homomorphisms. Then

o.depthy M > min{o_depthy M’ ,o_depthgy M"}.

In the remaining of this section R will be a Noetherian ring and
I an ideal of R. Let T = V (I) and (77, Fr) be the torsion theory
corresponding to the partition (7', F') of Spec(R). We denote the
torsion functor corresponding to (77, F1), by o;.

COROLLARY 1.5. Let 0 — M’ — M — M" —5 0 be an
exact sequence of finitely generated R-modules and R-homomorphi-
sms and I an ideal of R. Then one of the following must hold:

(i) depthg(I, M') > depthgz(/, M) = depthg(I, M");

(ii) depthg(I, M) > depthr(f, M') = 1 + depthz (I, M");

(iii) depthg(Z, M") > depthg (I, M) = depthg (I, M’);

Proof. For a finitely generated R-module M, o;_depthp M =
depthg (I, M) (see [4, Theorem 2.1]). Now by Proposition 1.3 the
statement is obvious.

PRrROPOSITION 1.6. Let M be an R-module, and a.,...,ay, be
an M -sequence in ﬂpeTo p. Then o_depthg M > n.

Proof. We show by inductiononn. Letn = 1and p € Assp(M).
Note that p ¢ T, otherwise a; € p which is a contradiction, so
that Assgp(M) C F. Thus by [3, Theorem 3.1] M is a torsion
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free R-module and by [4, Result 1.3] o_depthgz M > 1. Now sup-
pose that n > 1 and that the statement holds up to n — 1. By
induction hypothesis H:(M) = 0 and H}(M/a, M) = 0, for
i=20,1,...,n — 2. From the exact sequence

0— H™ M) HYM) — H»Y(M/a; M)

we have H?"1(M) = 0, otherwise @ # Assp( H' "} (M)) C T
(see [3, Proposition 1.4]). So that a; is a zero-divisor on H 271 (M)
which is a contradiction. Thus o_depthg M > n.

NOTE. Proposition 1.6 shows that

o-depthy M > sup{n € Ny : there exist ai,...,a, in p
peTo
is M. sequence }

but to establish the equality seems to be a challenging one. In the
following an special example shows that this is not true in general.

EXAMPLE. Let R = Z and T = {pZ : p is a prime integer }.
Suppose that o is the torsion functor corresponding to partition
(T,F = {0}) of Spec(Z). By the minimal injective resolution
0 — Z — Q — Q/Z — 0 we have o_depth; Z = 1 but
anETo pL C ZaZ(Z)

PrRoOPOSITION 1.7. Let M be an R-module and a4, ...,a, be
an M-sequence in (\,cq, p. Then
o_depthy M = n+ o_depthg M/(ay,...,a,)M.

Proof. It is enough to give a proof for n = 1. We may assume
that o_depthp M < oco. Set o_depthy M = k. By Proposition
16,k>1and H:(M)=0fori=0,1,...,k— 1. From the long
exact sequence

Hi (M) =5 HEYM) — HEY(M/a M) — HEL(M)

we have H{(M/a;M) = 0 for each ¢ = 0,1,...,k — 2 and
HEk-1(M/a,M) # 0, thus o_depthg M/a;M = k — 1.
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ProroOsITION 1.8. Let X be an indeterminate and ¢ : R —
R[X] be the inclusion map. Then o_depthy R = 04_depthy x) R[X].

Proof. By [4, Proposition 3.1] o_depthg R[X] = o4-depthpyx) R[X],
thus it is sufficient to show that o_depthy R = o_depthy R[X].
By [2, Ch VI Lemma 2.15] H!(R[X]) = H:(®R) = H(R)
for all 7 > 0, hence

o_depthyp R[X]| = inf{i € No : H(R[X]) # 0}
= inf{i € No: H!(R) # 0} = o_depthy R.

2. Some properties of o-dimension

This section is devoted to study some properties of the o-
dimension on R-module.

DEFINITION 2.1. Let M be an R-module. We define the o-
dimension of M, denoted by o_dimg M, to be the supremum of
lenghts of chains pg C p; C -+ C pyp, of prime ideals of Suppg (M)
for which p, € Ty if this supremum exists, and oo otherwise. We
put o.dimgr M = —1 if either M = 0 or To N Suppr(M) = 0.

As we shall see in the following, this is a natural generalization
of the usual Krull dimension.

REMARK 2.2. Let M be an R-module.

(i) o-dimp M = sup{dimp, M, : p € Tp}.

(ii) o.dimp M < dim M

(iii) From this definition it follows immediately that if (R, m)
is a local ring, then oc.dimpr M = dim M in which o is the torsion
functor generated by m.

Also if R (not necessarily local) is a ring and M an R-module
such that dim M < oo and there is at least one p € TyNSupp (M)
with dimgr, M, = dim M then dim M = o_.dimr M.

(iv) If M is a torsion R-module, then o.dimg M € {-1,0}.

(v) If R is a Noetherian ring and M is a torsion free R-module,
then o.dimg M # 0.
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PRrROPOSITION 2.3. Let R be a Noetherian ring and n € Ny, if
n < dim R, then there exists a torsion theory o, = (T,,Fn) on
R, such that o,.dimg R = n.

Proof. Let 0 < n < dim R. Set

C, = {p € Spec(R) : htp = n} and
T, = {q € Spec(R) : p C q for some p € Cp, }

it is clear that T}, is closed under specialization. If we set F,, =
Spec(R)\T,, then (T, F,) is a partition of Spec(R). Let o, =
(Tn, Frn) be the corresponding torsion theory. Clearly we have
(Tn)o = Cy, and o,-dimpg R = sup{dimg, Ry : p € Cp} = n.

PROPOSITION 2.4. Let 0 — M' — M — M" — 0 be
an exact sequence of R-modules and R-homomorphisms. Then
o_dimg M is finite if and only if o.dimg M' and o_dimp M" are
finite. In addition, if o.dimgr M is finite, then o_dimp M =
max{c_-dimr M’ o_dimg M"}.

Proof. Let o.dimg M = n < oo. Thus there is p € Ty such
that dimp, M, = n. For all q € Ty, by the exact sequence 0 —»
M, — My — M — 0 we have

dimp, M, = max{dimg, M,,dimg, M,'}
thus dimp, My < dimg, My < dimg, My = n and dimg, My <
dimgp, My < dimp, My, = n hence o_dimg M', 0_dimp M" are
finite and

max{c.dimp M',c_dimgr M"} < o_dimg M.

Now, let o.dimg M’ = m < o0 and o.dimg M" = k < . For
all p e Ty

dimp, M, = max{dimg, M,,dimg, M} < max{m, k}

then o_dimpg M is finite and o.dimg M < max{m, k}.
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PROPOSITION 2.5. Let R be a Noetherian ring and M an R-
module with o_dimg M = k (k € N), and let for all p € Ty, M,
be a finitely generated Ry-module. If ay,...,a, is an M-sequence

in e, b then

o.dimgM =n+o.dimg M/(ay,...,an) M.

Proof. For all p € Tp N Suppr(M), (Ry, pRp) is a Noetherian
local ring, M, is a non-zero finitely generated Ry-module and
a1/1,...,a,/1is an My-sequence in pR,. Thus £ > n and

dimg, M, = n+ dimg, Mp/(a1/1,...,an/1)M,
(see [8, Exercise 16.1]). Also, for all p € Ty (| Suppg(M)
dimg, (M/(ay,. .. ,an)M)p =dimp, My - n < k —n.
In particular dimp, My = k for some q € Ty. Hence
dimpg, (M /(ay, ... ,an)M)qz k—n.

Then o.dimg M /(ay,...,an)M =k — n.

PROPOSITION 2.6. Let S be a multiplicatively closed subset of
R. Ifforallp € Ty, SNp = 0, then for any R-module M,

o.dimp M = S~ 'o_dimg-15 S™IM.
Proof. Let ¢ : R — S~ R be the natural homomorphism, and
(T?, F?) be the partition of Spec(S~!R) corresponding to S~ 'o.
Let p € Spec(R) and pN S = @. Then by [4, page, 76], p € T

if and only if S™!p € T?®. It follows that p € Tp if and only if
S~p e (T?)o. Now

S~ lo_dimg-1g STIM
= sup {dim(3~1R)S_1p(Su1M)S~xp : S*lp € (T¢)o}
= sup {dimg, My : p € To} = o.dimp M.

In the remaining of this section R will be a Notherian ring.
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PROPOSITION 2.7. Let X be an indeterminate. Then

a-dimR R= a¢-dimR{X] RLX]

Proof. Let ¢ : R — R[X] be the natural homomorphism and
(T'¢, F?) be the partition of Spec(R[X]) corresponding to o4. For
p € Spec(R), it is easy to see that p € 7' if and only if p[X] € T?.
Thus if P € (T'?)o then P = P¢[X], where P° = PN R. Also, it is

easy to see that P € (T'%)o if and only if P¢ € Ty. By (8, Theorem
15.1] for any P € Spec(R[X])

(RX))p
Pe(R[X])p’

If P € (T'%)o, then dim % =0and ht P= ht P°. Thus
04-dimp(x) R[X] = sup{dim(R[X])p : P € (T?)o}
=sup{ ht P: P € (T?)o}
= sup{ ht P°: P° € Ty} = o-dimp R.

ht P = ht P°+ dim

The following theorem generalizes [6, Theorem 2.2].

THEOREM 2.8. Let M be an R-module and for all p € Ty, M,
be a finitely generated Ry-module. If o_.dimpM = n (n € Np)
then HZ(M) # O Furthermore, if k = sup

{i € No: H (M) # 0} and Suppr( HX¥(M))NT, # 0, then
o_dimR M=k

Proof. Let p € Tp and ¢ : R — R, be the natural homomor-
phism and (7%, F®) be the partition of Spec(R,;) corresponding to
o(p). It is easy to see that T¢ = {pR,}, thus o(p) = opg,. There
is p € Suppg(M) N Tp such that dimp, M, = n and

n=sup{i€ No: H f,(p)(Mp) = H ;RP(Mp) # 0}

(see [6, Theorem 2.2] and [1, Corollary 3.2]), thus by [4, Proposi-
tion 3.2 n = sup {i € Ng : (H 1 (M)), # 0} and H (M) # 0.
Now for all g € Suppr(M) N Ty,

sup{i € Ng : ( H,(M))q # 0} = dimp, My < dimp, M, = n.

Let q € Suppgr( H *¥(M))NTy. Then ( HX(M)), # 0 and k <
diqu M, <n.
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EXAMPLE 2.9. Let T C Max (R), and M be an R-module,
and for all m € T, My, be a finitely generated R,-module. If
o-dimgp M = n(n € Ny) then

o-dimp M =sup{i € Ng: H (M) # 0}.

REMARK 2.10. Let (R,m) be alocalring and T # {m}. Let M
be an R-module and for all p € Tp, M, be a finitely generated R,-
module. If c_dimg M = n (n € Ny) then there is a p € Tp\{m}
such that dimg, M, = n. Thus

op)(Mp) = (H7(M))p #0 and Suppg( H 3(M)) € {m}.

This shows that H (M) is not Artinian.

However, the following theorems determine the cases in which
H ¢ (M) is Artinian.

The next result extends [10, Theorem 3.3].

THEOREM 2.11. Let (R, m) be a local ring. If for every finitely
generated torsion free R-module N, anTo p & Zgr(N), then for
any finitely generated R-module M, with dim M =n, H?(M) is
Artinian.

Proof. We use induction on n. If n = 0 then Suppg(M) = {m}
and M is Artinian, thus (M) = H 9(M) is Artinian. Now let
n>1 Foralli>1, H}(M)= H!(M/oc(M))anddim M/c(M)
< dimM. If dimM/o(M) < n, then H 2(M) = 0. So we may
assume that M is torsion free. Let a € [,cp, P\Zr(M) and
M' = M/aM. We have dim M’ = n — 1 and the exact sequence

0—M S5 M-— M —0 yields an exact sequence
H;~'(M') — H3(M) = H(M).

By induction hypothesis H ?~!(M’) is Artinian, so 0 : g n(M) @
is Artinian. Let z € H Z(M) then there exists an ideal I of R
such that R/ is torsion module and Ix = 0. If I C p, thenpe T
and a € p, thus a € r(I) = [\, p and there is k € N such a* € I
so that ¥z = 0. Therefore, HZ(M) = {Jyy0 : 1 n(am) a* and
H 7{M) is Artinian (see [9, Theorem 1.3]).

The next result extends [6, Theorem 2.1].
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THEOREM 2.12. Let T be a finite subset of Max (R), M be an
R-module and for allm € T, M,, a finitely generated R,, module.
Then H'® (M) is an Artinian R-module for each ¢ > 0.

Proof. Let
0 — M — EY(M) — EY(M) — ... — EY(M) — E**}Y (M) — ...

be a minimal injective resolution of M. For each ¢ > 0

o(E' (M @ pt(m, M)E(R/m)
meT

and for each i > 0, y'(m, M) = p'(mRm, M) is finite (see (8,
Theorem 18.7]). Hence o(E*(M)) is Artinian for each i > 0 (see
[7, Proposition 3]). It follows that H (M) is Artinian for all
12> 0.

3. 0-Cohen-Macaulay modules
In this section R is Noetherian ring.

PROPOSITION 3.1. Let M be a non-zero R-module and T, C
Suppgr(M). If o(p)-depthp, M, is finite, for all p € To, then
o.depthg M < o_dimp M.

Proof. We may assume that o.dimg M is finite. For all p € Tp,
My is a non-zero Ry-module and o(p)-depthg, M, is finite, thus
o(p)-depthg M, < dimg, M, (see (1, Corollary 3.2]). By [4,
Corollary 4.2]

o_depthg M = inf{o(p)-depthy M, :p € T}.

Thus
o_depthg M < inf{o(p)-depthp M, :p € To}
< sup{o(p)-depthp, M, :p € To}
< sup{dimg, My : p € To} = o_dimp M.
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COROLLARY 3.2. If M is a non-zero finitely generated R-module
and Ty C Suppgr(M), then o_depthg M < o_dimp M.

Proof. Let p € Ty. Then o(p).depthg, My = oyg,-depthy M,
= depthp  Mp < co. Now the claim is obvious by Proposition 3.1.

EXAMPLE 3.3. Let k be a field and R = k[X,Y, Z], where X, Y
and Z are indeterminates. Set I = (X)N (Y,Z) and T = V (I)
so that Ty = {(X), (Y, 2)}.

or-depthy R = inf{depth(p,R) :pe To} =1
(see [4, Theorem 4.3]) and o;-dimpr R = sup{dim Ry : p € Tp} =
2. Thus
or-depthg R < o;_dimp R < dim R.

DEFINITION 3.4. Let R be a Noetherian ring, and M be a
finitely generated R-module. We say that M is a o-Cohen- Macau-
lay (. CM ) module if Ty C Suppp(M) and o_depthg M = o_dimg M,
or if Tg € Suppgr(M). If R itself is a 0. CM R-module we say
that R is 0. CM ring.

PRroOPOSITION 3.5. Let (R,m) be a local ring and M be a
finitely generated R-module. Then M is a CM module if and
only if M is a ow-CM module.

Proof. We may assume that M # 0, thus To = {m} C Suppr(M);

Om-dimp M = dimg M, = dim M and
Om-~depthp M = depthp M.

ProPOSITION 3.6. If for all ideals I of R, R is o;-CM, then
R is CM. Conversely, if R is a CM ring then R is 0;-CM, for all
unimxed ideal J of R.

Proof. Let 1 be an ideal of R. We have

or-depthy R = depth(I, R) < htI = inf{htp : p € Tp}
<sup{htp:peTp} =o0r-dimgR (T'= V (I)).
If R is 0;-CM, then depth(/,R) = htl, so that R is CM. Con-
versely, if R is CM ring and J an unmixed ideal, then for any p

and q in To(T = V (J)), we have htp = htq and by the above
relations o;_depthy R = o;.dimg R.
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PROPOSITION 3.7. (i) If M is a finitely generated torsion R-
module, then M is a o-CM module.

(i) Let p € To and M be an R-module. If M, is a non-zero
finitely generated Ry-module, then M, is CM if and only if M,, is
a o(p)-CM R,-module.

Proof. (i) We may assume that M # 0 and Tp C Suppg(M).
It is clear from Remark 2.2 (iv) and Corollary 3.2.
(ii) Let p € Ty N Suppgr(M). Then

a(p)_deptth My = depthg, M, and o(p)-dimg, M, = dimp, Mp.

ProrosITION 3.8. Let M be a 0-CM R-module and Ty C
Suppgr(M). Then for all p € Ty, M, is a CM R,-module.

Proof. Note that

o.depthy M < inf{o(p)-depthp, M, : p € Tp}
= inf{depthp, My : p € To}
< sup{dimg, My : p € Ty} = o_dimp M.

Since M is o-CM then inf{depthg M, : p € Ty} = sup{dimpg, M,
:p € Tp} so that deptth M, = dimpg, M,, for all p € Tp,.

PROPOSITION 3.9. Let M be a non-zero finitely generated R-
module with o_dimg M < co. If ay,...,a, is an M-sequence in
ﬂpeTo p, then M is o-CM if and only if M/(ay, . ..,an)M is o-CM.

Proof. We may assume that Ty C Suppz (M), so that the result
is clear by Proposition 1.7 and Proposition 2.5.

PROPOSITION 3.10. Let S be a multiplicatively closed subset
of R such that pNS =@, for all p € Ty. If M is a 0-CM R-module,
then S™M is a S~ 'o-CM module over S™!R.

Proof. For p € Ty (S7'M)g-1, = M,, thus Ty € Suppg(M) if
and only if (T%)o € Suppg-1z(S~'M). Assume that M # 0 and
Ty C Suppyr(M). By [4, Proposition 3.2}, we have

o_depthy M < S™'o_depthg-.1p S™'M



A Generalization of Cohen-Macaulay Modules by Torsion Theory 13

and by Corollary 3.2 S~ lo_depthg-15 57 M < S7lo.dimg-15 S~ M.
Since M is o-CM then by Proposition 2.6

S‘la_depthSqR S._lM = S—la_dimg-1R S_lM.

PROPOSITION 3.11. R is 0-CM if and only if R[X] is 04,-CM.

Proof. By Proposition 1.8 and Proposition 2.7 the statement is
obvious.

PROPOSITION 3.12. Let M be a finitely generated R-module
with o_dimg M = n (n € Np) such that Ty C Suppyp(M). Set
k= sup{i € Ng: H (M) # 0}. Then M is 0-CM and Ty N
Suppg( H E(M)) # 0 if and only if H: (M) =0, for all i # n.

Proof. By Theorem 2.8, H7 (M) # 0 and n = k. Now since
M is 0-CM thus H (M) = 0 for all ¢ with ¢ < n. The converse
is obvious.

Acknowledgment: The second author wishes to thank K.
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