A GENERALIZATION OF COHEN-MACAULAY MODULES BY TORSION THEORY

M. H. BIJAN-ZADEH AND SH. PAYROVI

Institute of Mathematics, University for Teacher Education, 599 Taleghani Avenue, Tehran/15614, Iran.

Abstract In this short note we study the torsion theories over a commutative ring R and discuss a relative dimension related to such theories for R-modules. Let σ be a torsion functor and (T,F) be its corresponding partition of $\operatorname{Spec}(R)$. The concept of σ -Cohen Macaulay (abbr. σ -CM) module is defined and some of the main points concerning the usual Cohen-Macaulay modules are extended. In particular it is shown that if M is a non-zero σ -CM module over R and S is a multiplicatively closed subset of R such that, for all minimal element of T, $S \cap \mathfrak{p} = \emptyset$, then $S^{-1}M$ is a $S^{-1}\sigma$ -CM module over $S^{-1}R$, where $S^{-1}\sigma$ is the direct image of σ under the natural ring homomorphism $R \longrightarrow S^{-1}R$.

1. Introduction, notation and some properties of σ -depth

Cohen-Macaulay modules play an important role in the study of commutative algebra and some various attempts are appeared in the litrature to generalize this concept (see [5]).

Throughout this note R will denote a commutative ring with non-zero identity and σ will be a torsion functor over R. Also, (T,F) will be the corresponding partition of $\operatorname{Spec}(R)$ so that $T=\{\mathfrak{p}\in\operatorname{Spec}(R):R/\mathfrak{p}\text{ is a torsion module}\}$ and $F=\operatorname{Spec}(R)\backslash T$. The primes in T are called torsion primes, while those in F are called torsion free primes (see [4, page, 73]). We also use T_0 to denote the set of minimal elements (primes) of T. Let R' be an another commutative ring and $\phi:R\longrightarrow R'$ be a ring homomorphism. We denote the direct image of σ under ϕ by σ_{ϕ} (see [4, section 3]). Let S be a multiplicatively closed subset of

Received July 11, 1997.

R. Then the direct image of σ under the natural homomorphism $R \longrightarrow S^{-1}R$ is denoted by $S^{-1}\sigma$. In particular if $S = R \setminus \mathfrak{p}$, for some prime ideal \mathfrak{p} of R, then we denote $S^{-1}\sigma$ by $\sigma(\mathfrak{p})$.

DEFINITION 1.1. Let $(\mathcal{T}, \mathcal{F})$ be a torsion theory and M an R-module. We define the $(\mathcal{T}, \mathcal{F})$ -dominant dimension of M, denoted by $(\mathcal{T}, \mathcal{F})$ - $d_R(M)$, as the least integer n for which the n-th term $E^n(M)$ in a minimal injective resolution for M is not torsion free, if any such integers exist and ∞ otherwise (see[1, Definition 1.2]).

We shall see later (Corollary 1.5) that we can consider the $(\mathcal{T}, \mathcal{F})$ -dominant dimension as a generalization of depth and we denote it by σ -depth, where σ is the corresponding torsion functor to the $(\mathcal{T}, \mathcal{F})$.

EXAMPLE 1.2. Let $R=\mathbb{Z}$ and G be a \mathbb{Z} -module. Consider the exact sequence $0\longrightarrow G\stackrel{\alpha}{\to} E(G)\longrightarrow E(G)/\alpha(G)\longrightarrow 0$, where E(G) is the injective envelope of G, so that $E(G)/\alpha(G)$ is an injective \mathbb{Z} -module. If G is a torsion free \mathbb{Z} -module, then E(G) is a torsion free \mathbb{Z} -module and thus $\sigma_- \operatorname{depth}_{\mathbb{Z}} G=1$ or ∞ . If G is not torsion free then E(G) is not torsion free and $\sigma_- \operatorname{depth}_{\mathbb{Z}} G=0$. Hence $\sigma_- \operatorname{depth}_{\mathbb{Z}} G \in \{0,1,\infty\}$.

PROPOSITION 1.3. Let $0 \longrightarrow M' \longrightarrow M \longrightarrow M'' \longrightarrow 0$ be an exact sequence of R-modules and R-homomorphisms. Then one of the following must hold:

- (i) $\sigma_{-} \operatorname{depth}_{R} M' \geq \sigma_{-} \operatorname{depth}_{R} M = \sigma_{-} \operatorname{depth}_{R} M''$;
- (ii) $\sigma_{-} \operatorname{depth}_{R} M \geq \sigma_{-} \operatorname{depth}_{R} M' = 1 + \sigma_{-} \operatorname{depth}_{R} M''$;
- (iii) $\sigma_{-} \operatorname{depth}_{R} M'' \geq \sigma_{-} \operatorname{depth}_{R} M = \sigma_{-} \operatorname{depth}_{R} M';$

Proof. Let $n \in \mathbb{N}_0$ (\mathbb{N}_0 , denotes the set of non negative integers) and $\sigma_{-} \operatorname{depth}_R M'' = n + 1$.

Case 1: $\sigma_{-} \operatorname{depth}_{R} M = n + 1$. For any R-module N. We have

$$\sigma_{-} \operatorname{depth}_{R} N = \inf\{i \in \mathbb{N}_{0}: \operatorname{H}_{\sigma}^{i}(N) \neq 0\}$$

(see [2, Ch VI, Corollary 1.6]). The exact sequence $0 \longrightarrow M' \longrightarrow M \longrightarrow M'' \longrightarrow 0$ induces the exact sequence

$$(\star)$$
 $H_{\sigma}^{i-1}(M'') \longrightarrow H_{\sigma}^{i}(M') \longrightarrow H_{\sigma}^{i}(M) \longrightarrow H_{\sigma}^{i}(M'').$

For all $i=0,1,\ldots,n$, $H^{i}_{\sigma}(M)=H^{i}_{\sigma}(M'')=0$, thus $H^{i}_{\sigma}(M')=0$ for all $i=0,1,\ldots,n$ and σ -depth_R $M'\geq n+1$.

Case 2: $\sigma_{-} \operatorname{depth}_{R} M < n+1$. By the exact sequence (\star) we have $\operatorname{H}_{\sigma}^{i}(M) = \operatorname{H}_{\sigma}^{i}(M')$ for all $i = 0, 1, \ldots, n$, thus $\sigma_{-} \operatorname{depth}_{R} M = \sigma_{-} \operatorname{depth}_{R} M'$.

Case 3: $\sigma_{-} \operatorname{depth}_{R} M > n+1$. So that we have $\operatorname{H}_{\sigma}^{i}(M') = \operatorname{H}_{\sigma}^{i-1}(M'')$ for $i=1,2,\ldots,n+1$. Thus $\operatorname{H}_{\sigma}^{i}(M') = 0$ for $i=0,1,\ldots,n+1$ and since the sequence $0 \longrightarrow \operatorname{H}_{\sigma}^{n+1}(M'') \longrightarrow \operatorname{H}_{\sigma}^{n+2}(M')$ is exact then $\operatorname{H}_{\sigma}^{n+2}(M') \neq 0$, and $\sigma_{-} \operatorname{depth}_{R} M' = n+2$.

The cases $\sigma_{-} \operatorname{depth}_{R} M'' = 0$ or ∞ are trivial.

COROLLARY 1.4. Let $0 \longrightarrow M' \longrightarrow M \longrightarrow M'' \longrightarrow 0$ be an exact sequence of R-modules and R-homomorphisms. Then

$$\sigma_{-} \operatorname{depth}_{R} M \geq \min \{ \sigma_{-} \operatorname{depth}_{R} M', \sigma_{-} \operatorname{depth}_{R} M'' \}.$$

In the remaining of this section R will be a Noetherian ring and I an ideal of R. Let T = V(I) and $(\mathcal{T}_I, \mathcal{F}_I)$ be the torsion theory corresponding to the partition (T, F) of $\operatorname{Spec}(R)$. We denote the torsion functor corresponding to $(\mathcal{T}_I, \mathcal{F}_I)$, by σ_I .

COROLLARY 1.5. Let $0 \longrightarrow M' \longrightarrow M \longrightarrow M'' \longrightarrow 0$ be an exact sequence of finitely generated R-modules and R-homomorphisms and I an ideal of R. Then one of the following must hold:

- (i) $\operatorname{depth}_R(I, M') \ge \operatorname{depth}_R(I, M) = \operatorname{depth}_R(I, M'');$
- (ii) $\operatorname{depth}_R(I, M) \ge \operatorname{depth}_R(I, M') = 1 + \operatorname{depth}_R(I, M'');$
- (iii) $\operatorname{depth}_R(I, M'') \ge \operatorname{depth}_R(I, M) = \operatorname{depth}_R(I, M');$

Proof. For a finitely generated R-module M, σ_I -depth_R M = depth_R(I, M) (see [4, Theorem 2.1]). Now by Proposition 1.3 the statement is obvious.

PROPOSITION 1.6. Let M be an R-module, and a_1, \ldots, a_n be an M-sequence in $\bigcap_{p \in T_0} \mathfrak{p}$. Then $\sigma_- \operatorname{depth}_R M \geq n$.

Proof. We show by induction on n. Let n = 1 and $\mathfrak{p} \in \mathrm{Ass}_R(M)$. Note that $\mathfrak{p} \notin T$, otherwise $a_1 \in \mathfrak{p}$ which is a contradiction, so that $\mathrm{Ass}_R(M) \subseteq F$. Thus by [3, Theorem 3.1] M is a torsion

free R-module and by [4, Result 1.3] $\sigma_{-} \operatorname{depth}_{R} M \geq 1$. Now suppose that n > 1 and that the statement holds up to n - 1. By induction hypothesis $\operatorname{H}_{\sigma}^{i}(M) = 0$ and $\operatorname{H}_{\sigma}^{i}(M/a_{1}M) = 0$, for $i = 0, 1, \ldots, n - 2$. From the exact sequence

$$0 \longrightarrow H_{\sigma}^{n-1}(M) \xrightarrow{a_1} H_{\sigma}^{n-1}(M) \longrightarrow H_{\sigma}^{n-1}(M/a_1M)$$

we have $\operatorname{H}^{n-1}_{\sigma}(M)=0$, otherwise $\emptyset \neq \operatorname{Ass}_{R}(\operatorname{H}^{n-1}_{\sigma}(M))\subseteq T$ (see [3, Proposition 1.4]). So that a_{1} is a zero-divisor on $\operatorname{H}^{n-1}_{\sigma}(M)$ which is a contradiction. Thus $\sigma_{-}\operatorname{depth}_{R}M\geq n$.

NOTE. Proposition 1.6 shows that

$$\sigma_{-} \operatorname{depth}_{R} M \geq \sup \{ n \in \mathbb{N}_{0} : \text{there exist } a_{1}, \ldots, a_{n} \text{ in } \bigcap_{\mathfrak{p} \in T_{0}} \mathfrak{p}$$
is M_{-} sequence $\}$

but to establish the equality seems to be a challenging one. In the following an special example shows that this is not true in general.

EXAMPLE. Let $R = \mathbb{Z}$ and $T = \{p\mathbb{Z} : p \text{ is a prime integer }\}$. Suppose that σ is the torsion functor corresponding to partition $(T, F = \{0\})$ of $\operatorname{Spec}(\mathbb{Z})$. By the minimal injective resolution $0 \longrightarrow \mathbb{Z} \longrightarrow \mathbb{Q} \longrightarrow \mathbb{Q}/\mathbb{Z} \longrightarrow 0$ we have $\sigma_{-}\operatorname{depth}_{\mathbb{Z}}\mathbb{Z} = 1$ but $\bigcap_{p\mathbb{Z} \in T_0} p\mathbb{Z} \subset Z_{\mathbb{Z}}(\mathbb{Z})$.

PROPOSITION 1.7. Let M be an R-module and a_1, \ldots, a_n be an M-sequence in $\bigcap_{\mathfrak{p}\in T_0}\mathfrak{p}$. Then σ -depth_R $M=n+\sigma$ -depth_R $M/(a_1,\ldots,a_n)M$.

Proof. It is enough to give a proof for n=1. We may assume that $\sigma_{-} \operatorname{depth}_{R} M < \infty$. Set $\sigma_{-} \operatorname{depth}_{R} M = k$. By Proposition 1.6, $k \geq 1$ and H $_{\sigma}^{i}(M) = 0$ for $i = 0, 1, \ldots, k-1$. From the long exact sequence

$$\operatorname{H}_{\sigma}^{i-1}(M) \xrightarrow{a_1} \operatorname{H}_{\sigma}^{i-1}(M) \longrightarrow \operatorname{H}_{\sigma}^{i-1}(M/a_1M) \longrightarrow \operatorname{H}_{\sigma}^{i}(M)$$

we have $H^{i}_{\sigma}(M/a_{1}M)=0$ for each $i=0,1,\ldots,k-2$ and $H^{k-1}_{\sigma}(M/a_{1}M)\neq 0$, thus $\sigma_{-}\mathrm{depth}_{R}M/a_{1}M=k-1$.

PROPOSITION 1.8. Let X be an indeterminate and $\phi: R \longrightarrow R[X]$ be the inclusion map. Then $\sigma_{-} \operatorname{depth}_{R} R = \sigma_{\phi_{-}} \operatorname{depth}_{R[X]} R[X]$.

Proof. By [4, Proposition 3.1] $\sigma_{-} \operatorname{depth}_{R} R[X] = \sigma_{\phi_{-}} \operatorname{depth}_{R[X]} R[X]$, thus it is sufficient to show that $\sigma_{-} \operatorname{depth}_{R} R = \sigma_{-} \operatorname{depth}_{R} R[X]$. By [2, Ch VI Lemma 2.15] H $_{\sigma}^{i}(R[X]) = H_{\sigma}^{i}(\oplus R) = \oplus H_{\sigma}^{i}(R)$ for all $i \geq 0$, hence

$$egin{aligned} \sigma_{-}\mathrm{depth}_{R}\,R[X] &= \inf\{i \in \mathbb{N}_{0}: \ \mathrm{H}\stackrel{i}{_{\sigma}}(R[X])
eq 0\} \ &= \inf\{i \in \mathbb{N}_{0}: \ \mathrm{H}\stackrel{i}{_{\sigma}}(R)
eq 0\} = \sigma_{-}\mathrm{depth}_{R}\,R. \end{aligned}$$

2. Some properties of σ -dimension

This section is devoted to study some properties of the σ -dimension on R-module.

DEFINITION 2.1. Let M be an R-module. We define the σ -dimension of M, denoted by $\sigma_-\dim_R M$, to be the supremum of lengths of chains $\mathfrak{p}_0 \subset \mathfrak{p}_1 \subset \cdots \subset \mathfrak{p}_n$ of prime ideals of $\operatorname{Supp}_R(M)$ for which $\mathfrak{p}_n \in T_0$ if this supremum exists, and ∞ otherwise. We put $\sigma_-\dim_R M = -1$ if either M = 0 or $T_0 \cap \operatorname{Supp}_R(M) = \emptyset$.

As we shall see in the following, this is a natural generalization of the usual Krull dimension.

REMARK 2.2. Let M be an R-module.

- (i) $\sigma_{-}\dim_{R} M = \sup \{\dim_{R_{\mathfrak{p}}} M_{\mathfrak{p}} : \mathfrak{p} \in T_{0}\}.$
- (ii) $\sigma_{-}\dim_{R} M \leq \dim M$
- (iii) From this definition it follows immediately that if (R, \mathfrak{m}) is a local ring, then $\sigma_{-}\dim_{R} M = \dim M$ in which σ is the torsion functor generated by \mathfrak{m} .

Also if R (not necessarily local) is a ring and M an R-module such that $\dim M < \infty$ and there is at least one $\mathfrak{p} \in T_0 \cap \operatorname{Supp}_R(M)$ with $\dim_{R_{\mathfrak{p}}} M_{\mathfrak{p}} = \dim M$ then $\dim M = \sigma_{-} \dim_{R} M$.

- (iv) If M is a torsion R-module, then $\sigma_{-}\dim_{\mathbb{R}} M \in \{-1,0\}$.
- (v) If R is a Noetherian ring and M is a torsion free R-module, then $\sigma_{-}\dim_{R} M \neq 0$.

PROPOSITION 2.3. Let R be a Noetherian ring and $n \in \mathbb{N}_0$, if $n \leq \dim R$, then there exists a torsion theory $\sigma_n = (\mathcal{T}_n, \mathcal{F}_n)$ on R, such that $\sigma_{n-}\dim_R R = n$.

Proof. Let $0 \le n \le \dim R$. Set

$$C_n = \{ \mathfrak{p} \in \operatorname{Spec}(R) : ht\mathfrak{p} = n \} \text{ and }$$

 $T_n = \{ \mathfrak{q} \in \operatorname{Spec}(R) : \mathfrak{p} \subseteq \mathfrak{q} \text{ for some } \mathfrak{p} \in C_n \}$

it is clear that T_n is closed under specialization. If we set $F_n = \operatorname{Spec}(R) \backslash T_n$, then (T_n, F_n) is a partition of $\operatorname{Spec}(R)$. Let $\sigma_n = (\mathcal{T}_n, \mathcal{F}_n)$ be the corresponding torsion theory. Clearly we have $(T_n)_0 = C_n$ and $\sigma_{n-}\dim_R R = \sup\{\dim_{R_n} R_p : p \in C_n\} = n$.

PROPOSITION 2.4. Let $0 \longrightarrow M' \longrightarrow M \longrightarrow M'' \longrightarrow 0$ be an exact sequence of R-modules and R-homomorphisms. Then $\sigma_{-}\dim_{R}M$ is finite if and only if $\sigma_{-}\dim_{R}M'$ and $\sigma_{-}\dim_{R}M''$ are finite. In addition, if $\sigma_{-}\dim_{R}M$ is finite, then $\sigma_{-}\dim_{R}M = \max\{\sigma_{-}\dim_{R}M', \sigma_{-}\dim_{R}M''\}$.

Proof. Let $\sigma_{-}\dim_{R} M = n < \infty$. Thus there is $\mathfrak{p} \in T_{0}$ such that $\dim_{R_{\mathfrak{p}}} M_{\mathfrak{p}} = n$. For all $\mathfrak{q} \in T_{0}$, by the exact sequence $0 \longrightarrow M'_{\mathfrak{q}} \longrightarrow M'_{\mathfrak{q}} \longrightarrow 0$ we have

$$\dim_{R_{\mathfrak{q}}} M_{\mathfrak{q}} = \max\{\dim_{R_{\mathfrak{q}}} M'_{\mathfrak{q}}, \dim_{R_{\mathfrak{q}}} M''_{\mathfrak{q}}\}$$

thus $\dim_{R_{\mathfrak{q}}} M'_{\mathfrak{q}} \leq \dim_{R_{\mathfrak{p}}} M_{\mathfrak{q}} \leq \dim_{R_{\mathfrak{p}}} M_{\mathfrak{p}} = n$ and $\dim_{R_{\mathfrak{q}}} M''_{\mathfrak{q}} \leq \dim_{R_{\mathfrak{p}}} M_{\mathfrak{p}} = n$ hence $\sigma_{-}\dim_{R} M'$, $\sigma_{-}\dim_{R} M''$ are finite and

$$\max\{\sigma_{-}\dim_{R}M',\sigma_{-}\dim_{R}M''\}\leq\sigma_{-}\dim_{R}M.$$

Now, let $\sigma_{-}\dim_{R}M'=m<\infty$ and $\sigma_{-}\dim_{R}M''=k<\infty$. For all $\mathfrak{p}\in T_{0}$

$$\dim_{R_{\mathfrak{p}}} M_{\mathfrak{p}} = \max\{\dim_{R_{\mathfrak{p}}} M'_{\mathfrak{p}}, \dim_{R_{\mathfrak{p}}} M''_{\mathfrak{p}}\} \leq \max\{m, k\}$$

then $\sigma_{-}\dim_{R} M$ is finite and $\sigma_{-}\dim_{R} M \leq \max\{m, k\}$.

PROPOSITION 2.5. Let R be a Noetherian ring and M an R-module with $\sigma_{-}\dim_{R} M = k$ $(k \in \mathbb{N})$, and let for all $\mathfrak{p} \in T_{0}$, $M_{\mathfrak{p}}$ be a finitely generated $R_{\mathfrak{p}}$ -module. If a_{1}, \ldots, a_{n} is an M-sequence in $\bigcap_{\mathfrak{p} \in T_{0}} \mathfrak{p}$ then

$$\sigma_{-}\dim_{\mathbb{R}} M = n + \sigma_{-}\dim_{\mathbb{R}} M/(a_1,\ldots,a_n)M.$$

Proof. For all $\mathfrak{p} \in T_0 \cap \operatorname{Supp}_R(M)$, $(R_{\mathfrak{p}}, \mathfrak{p}R_{\mathfrak{p}})$ is a Noetherian local ring, $M_{\mathfrak{p}}$ is a non-zero finitely generated $R_{\mathfrak{p}}$ -module and $a_1/1, \ldots, a_n/1$ is an $M_{\mathfrak{p}}$ -sequence in $\mathfrak{p}R_{\mathfrak{p}}$. Thus $k \geq n$ and

$$\dim_{R_{\mathfrak{p}}} M_{\mathfrak{p}} = n + \dim_{R_{\mathfrak{p}}} M_{\mathfrak{p}} / (a_1/1, \dots, a_n/1) M_{\mathfrak{p}}$$

(see [8, Exercise 16.1]). Also, for all $\mathfrak{p} \in T_0 \cap \operatorname{Supp}_R(M)$

$$\dim_{R_{\mathfrak{p}}} (M/(a_1,\ldots,a_n)M)_{\mathfrak{p}} = \dim_{R_{\mathfrak{p}}} M_{\mathfrak{p}} - n \leq k - n.$$

In particular $\dim_{R_{\mathfrak{q}}} M_{\mathfrak{q}} = k$ for some $\mathfrak{q} \in T_0$. Hence

$$\dim_{R_{\mathfrak{q}}}(M/(a_1,\ldots,a_n)M)_{\mathfrak{q}}=k-n.$$

Then $\sigma_{-}\dim_{\mathbb{R}} M/(a_1,\ldots,a_n)M=k-n$.

PROPOSITION 2.6. Let S be a multiplicatively closed subset of R. If for all $\mathfrak{p} \in T_0$, $S \cap \mathfrak{p} = \emptyset$, then for any R-module M,

$$\sigma_{-}\dim_{R} M = S^{-1}\sigma_{-}\dim_{S^{-1}R} S^{-1}M.$$

Proof. Let $\phi: R \longrightarrow S^{-1}R$ be the natural homomorphism, and (T^{ϕ}, F^{ϕ}) be the partition of $\operatorname{Spec}(S^{-1}R)$ corresponding to $S^{-1}\sigma$. Let $\mathfrak{p} \in \operatorname{Spec}(R)$ and $\mathfrak{p} \cap S = \emptyset$. Then by [4, page, 76], $\mathfrak{p} \in T$ if and only if $S^{-1}\mathfrak{p} \in T^{\phi}$. It follows that $\mathfrak{p} \in T_0$ if and only if $S^{-1}\mathfrak{p} \in (T^{\phi})_0$. Now

$$S^{-1}\sigma_{-}\dim_{S^{-1}R} S^{-1}M$$

$$= \sup \left\{ \dim_{(S^{-1}R)_{S^{-1}\mathfrak{p}}} (S^{-1}M)_{S^{-1}\mathfrak{p}} : S^{-1}\mathfrak{p} \in (T^{\phi})_{0} \right\}$$

$$= \sup \left\{ \dim_{R_{\mathfrak{p}}} M_{\mathfrak{p}} : \mathfrak{p} \in T_{0} \right\} = \sigma_{-}\dim_{R} M.$$

In the remaining of this section R will be a Notherian ring.

PROPOSITION 2.7. Let X be an indeterminate. Then $\sigma_{-}\dim_{R}R=\sigma_{\phi_{-}}\dim_{R[X]}R[X].$

Proof. Let $\phi: R \longrightarrow R[X]$ be the natural homomorphism and (T^{ϕ}, F^{ϕ}) be the partition of $\operatorname{Spec}(R[X])$ corresponding to σ_{ϕ} . For $\mathfrak{p} \in \operatorname{Spec}(R)$, it is easy to see that $\mathfrak{p} \in T$ if and only if $\mathfrak{p}[X] \in T^{\phi}$. Thus if $P \in (T^{\phi})_0$ then $P = P^c[X]$, where $P^c = P \cap R$. Also, it is easy to see that $P \in (T^{\phi})_0$ if and only if $P^c \in T_0$. By [8, Theorem 15.1] for any $P \in \operatorname{Spec}(R[X])$

$$\operatorname{ht} \, P = \, \operatorname{ht} \, P^c + \dim \frac{(R[X])_P}{P^c(R[X])_P}.$$

If $P \in (T^{\phi})_0$, then dim $\frac{(R[X])_P}{P^c(R[X])_P} = 0$ and ht $P = \text{ht } P^c$. Thus

$$egin{aligned} \sigma_{\phi^-} \dim_{R[X]} R[X] &= \sup \{ \dim(R[X])_P : P \in (T^\phi)_0 \} \ &= \sup \{ \ \operatorname{ht} \ P : P \in (T^\phi)_0 \} \ &= \sup \{ \ \operatorname{ht} \ P^c : P^c \in T_0 \} = \sigma_- \dim_R R. \end{aligned}$$

The following theorem generalizes [6, Theorem 2.2].

THEOREM 2.8. Let M be an R-module and for all $\mathfrak{p} \in T_0$, $M_{\mathfrak{p}}$ be a finitely generated $R_{\mathfrak{p}}$ -module. If $\sigma_{-}\mathrm{dim}_R M = n$ $(n \in \mathbb{N}_0)$ then $H^n_{\sigma}(M) \neq 0$. Furthermore, if $k = \sup\{i \in \mathbb{N}_0 : H^i_{\sigma}(M) \neq 0\}$ and $\mathrm{Supp}_R(H^k_{\sigma}(M)) \cap T_0 \neq \emptyset$, then $\sigma_{-}\mathrm{dim}_R M = k$.

Proof. Let $\mathfrak{p} \in T_0$ and $\phi: R \longrightarrow R_{\mathfrak{p}}$ be the natural homomorphism and (T^{ϕ}, F^{ϕ}) be the partition of $\operatorname{Spec}(R_{\mathfrak{p}})$ corresponding to $\sigma(\mathfrak{p})$. It is easy to see that $T^{\phi} = \{\mathfrak{p}R_{\mathfrak{p}}\}$, thus $\sigma(\mathfrak{p}) = \sigma_{\mathfrak{p}R_{\mathfrak{p}}}$. There is $\mathfrak{p} \in \operatorname{Supp}_R(M) \cap T_0$ such that $\dim_{R_{\mathfrak{p}}} M_{\mathfrak{p}} = n$ and

$$n = \sup\{i \in \mathbb{N}_0: \ \operatorname{H}^{i}_{\sigma(\mathfrak{p})}(M_{\mathfrak{p}}) = \ \operatorname{H}^{i}_{\mathfrak{p}R_{\mathfrak{p}}}(M_{\mathfrak{p}}) \neq 0\}$$

(see [6, Theorem 2.2] and [1, Corollary 3.2]), thus by [4, Proposition 3.2] $n = \sup \{i \in \mathbb{N}_0 : (H^i_{\sigma}(M))_{\mathfrak{p}} \neq 0\}$ and $H^n_{\sigma}(M) \neq 0$. Now for all $\mathfrak{q} \in \operatorname{Supp}_R(M) \cap T_0$,

 $\sup\{i\in\mathbb{N}_0: (\ \mathrm{H}_{\sigma}^{\ i}(M))_{\mathfrak{q}}\neq 0\} = \dim_{R_{\mathfrak{q}}}M_{\mathfrak{q}}\leq \dim_{R_{\mathfrak{p}}}M_{\mathfrak{p}}=n.$ Let $\mathfrak{q}\in \mathrm{Supp}_R(\ \mathrm{H}_{\sigma}^{\ k}(M))\cap T_0.$ Then $(\ \mathrm{H}_{\sigma}^{\ k}(M))_{\mathfrak{q}}\neq 0$ and $k\leq \dim_{R_{\mathfrak{q}}}M_{\mathfrak{q}}\leq n.$

EXAMPLE 2.9. Let $T \subseteq \operatorname{Max}(R)$, and M be an R-module, and for all $\mathfrak{m} \in T$, $M_{\mathfrak{m}}$ be a finitely generated $R_{\mathfrak{m}}$ -module. If $\sigma_{-}\dim_{R} M = n(n \in \mathbb{N}_{0})$ then

$$\sigma_{-}\dim_{R} M = \sup\{i \in \mathbb{N}_{0}: \operatorname{H}_{\sigma}^{i}(M) \neq 0\}.$$

REMARK 2.10. Let (R, \mathfrak{m}) be a local ring and $T \neq \{\mathfrak{m}\}$. Let M be an R-module and for all $\mathfrak{p} \in T_0$, $M_{\mathfrak{p}}$ be a finitely generated $R_{\mathfrak{p}}$ -module. If $\sigma_{-}\dim_{R} M = n \ (n \in \mathbb{N}_{0})$ then there is a $\mathfrak{p} \in T_{0} \setminus \{\mathfrak{m}\}$ such that $\dim_{R_{\mathfrak{p}}} M_{\mathfrak{p}} = n$. Thus

$$\mathrm{H}^{n}_{\sigma(\mathfrak{p})}(M_{\mathfrak{p}}) = (\mathrm{H}^{n}_{\sigma}(M))_{\mathfrak{p}} \neq 0 \ \ \mathrm{and} \ \ \mathrm{Supp}_{R}(\mathrm{H}^{n}_{\sigma}(M)) \not\subseteq \{\mathfrak{m}\}.$$

This shows that $H^{n}_{\sigma}(M)$ is not Artinian.

However, the following theorems determine the cases in which H $_{\sigma}^{i}(M)$ is Artinian.

The next result extends [10, Theorem 3.3].

THEOREM 2.11. Let (R, \mathfrak{m}) be a local ring. If for every finitely generated torsion free R-module N, $\bigcap_{\mathfrak{p}\in T_0}\mathfrak{p}\not\subseteq Z_R(N)$, then for any finitely generated R-module M, with dim M=n, $H^n_{\sigma}(M)$ is Artinian.

Proof. We use induction on n. If n=0 then $\operatorname{Supp}_R(M)=\{\mathfrak{m}\}$ and M is Artinian, thus $\sigma(M)=\operatorname{H}^0_\sigma(M)$ is Artinian. Now let $n\geq 1$. For all $i\geq 1$, $\operatorname{H}^i_\sigma(M)=\operatorname{H}^i_\sigma(M/\sigma(M))$ and $\dim M/\sigma(M)\leq \dim M$. If $\dim M/\sigma(M)< n$, then $\operatorname{H}^n_\sigma(M)=0$. So we may assume that M is torsion free. Let $a\in \bigcap_{\mathfrak{p}\in T_0}\mathfrak{p}\backslash Z_R(M)$ and M'=M/aM. We have $\dim M'=n-1$ and the exact sequence $0\longrightarrow M\stackrel{a}{\to} M\longrightarrow M'\longrightarrow 0$ yields an exact sequence

$$H^{n-1}_{\sigma}(M') \longrightarrow H^{n}_{\sigma}(M) \stackrel{a}{\longrightarrow} H^{n}_{\sigma}(M).$$

By induction hypothesis $\operatorname{H}_{\sigma}^{n-1}(M')$ is Artinian, so $0:_{\operatorname{H}_{\sigma}^{n}(M)}a$ is Artinian. Let $x\in \operatorname{H}_{\sigma}^{n}(M)$ then there exists an ideal I of R such that R/I is torsion module and Ix=0. If $I\subseteq \mathfrak{p}$, then $\mathfrak{p}\in T$ and $a\in \mathfrak{p}$, thus $a\in r(I)=\bigcap_{I\subseteq \mathfrak{p}}\mathfrak{p}$ and there is $k\in \mathbb{N}$ such $a^k\in I$ so that $a^kx=0$. Therefore, $\operatorname{H}_{\sigma}^{n}(M)=\bigcup_{k\in \mathbb{N}}0:_{\operatorname{H}_{\sigma}^{n}(M)}a^k$ and $\operatorname{H}_{\sigma}^{n}(M)$ is Artinian (see [9, Theorem 1.3]).

The next result extends [6, Theorem 2.1].

THEOREM 2.12. Let T be a finite subset of Max (R), M be an R-module and for all $m \in T$, M_m a finitely generated R_m module. Then $H_{\sigma}^i(M)$ is an Artinian R-module for each $i \geq 0$.

Proof. Let

$$0 \longrightarrow M \longrightarrow E^0(M) \longrightarrow E^1(M) \longrightarrow \ldots \longrightarrow E^i(M) \longrightarrow E^{i+1}(M) \longrightarrow \ldots$$

be a minimal injective resolution of M. For each $i \geq 0$

$$\sigma(E^{i}(M)) = \bigoplus_{\mathfrak{m} \in T} \mu^{i}(\mathfrak{m}, M) E(R/\mathfrak{m})$$

and for each $i \geq 0$, $\mu^{i}(\mathfrak{m}, M) = \mu^{i}(\mathfrak{m}R_{\mathfrak{m}}, M_{\mathfrak{m}})$ is finite (see [8, Theorem 18.7]). Hence $\sigma(E^{i}(M))$ is Artinian for each $i \geq 0$ (see [7, Proposition 3]). It follows that $H^{i}_{\sigma}(M)$ is Artinian for all $i \geq 0$.

3. σ -Cohen-Macaulay modules

In this section R is Noetherian ring.

PROPOSITION 3.1. Let M be a non-zero R-module and $T_0 \subseteq \operatorname{Supp}_R(M)$. If $\sigma(\mathfrak{p})$ -depth_{$R_{\mathfrak{p}}$} $M_{\mathfrak{p}}$ is finite, for all $\mathfrak{p} \in T_0$, then σ -depth_R $M \leq \sigma$ -dim_R M.

Proof. We may assume that $\sigma_{-}\dim_{R} M$ is finite. For all $\mathfrak{p} \in T_{0}$, $M_{\mathfrak{p}}$ is a non-zero $R_{\mathfrak{p}}$ -module and $\sigma(\mathfrak{p})_{-}\mathrm{depth}_{R_{\mathfrak{p}}} M_{\mathfrak{p}}$ is finite, thus $\sigma(\mathfrak{p})_{-}\mathrm{depth}_{R_{\mathfrak{p}}} M_{\mathfrak{p}} \leq \dim_{R_{\mathfrak{p}}} M_{\mathfrak{p}}$ (see [1, Corollary 3.2]). By [4, Corollary 4.2]

$$\sigma_{-} \operatorname{depth}_{R} M = \inf \{ \sigma(\mathfrak{p})_{-} \operatorname{depth}_{R_{\mathfrak{p}}} M_{\mathfrak{p}} : \mathfrak{p} \in T \}.$$

Thus

$$egin{aligned} \sigma_- \mathrm{depth}_R \, M &\leq \inf \{ \sigma(\mathfrak{p})_- \mathrm{depth}_{R_{\mathfrak{p}}} \, M_{\mathfrak{p}} : \mathfrak{p} \in T_0 \} \ &\leq \sup \{ \sigma(\mathfrak{p})_- \mathrm{depth}_{R_{\mathfrak{p}}} \, M_{\mathfrak{p}} : \mathfrak{p} \in T_0 \} \ &\leq \sup \{ \dim_{R_{\mathfrak{p}}} M_{\mathfrak{p}} : \mathfrak{p} \in T_0 \} = \sigma_- \mathrm{dim}_R \, M. \end{aligned}$$

COROLLARY 3.2. If M is a non-zero finitely generated R-module and $T_0 \subseteq \operatorname{Supp}_R(M)$, then $\sigma_- \operatorname{depth}_R M \leq \sigma_- \dim_R M$.

Proof. Let $\mathfrak{p} \in T_0$. Then $\sigma(\mathfrak{p})_- \operatorname{depth}_{R_{\mathfrak{p}}} M_{\mathfrak{p}} = \sigma_{\mathfrak{p}R_{\mathfrak{p}}} - \operatorname{depth}_{R_{\mathfrak{p}}} M_{\mathfrak{p}} = \operatorname{depth}_{R_{\mathfrak{p}}} M_{\mathfrak{p}} < \infty$. Now the claim is obvious by Proposition 3.1.

EXAMPLE 3.3. Let k be a field and R = k[X, Y, Z], where X, Y and Z are indeterminates. Set $I = (X) \cap (Y, Z)$ and T = V(I) so that $T_0 = \{(X), (Y, Z)\}$.

$$\sigma_{I-} \operatorname{depth}_{R} R = \inf \{ \operatorname{depth}(\mathfrak{p}, R) : \mathfrak{p} \in T_{0} \} = 1$$

(see [4, Theorem 4.3]) and σ_{I} -dim_R $R = \sup \{ \dim R_{\mathfrak{p}} : \mathfrak{p} \in T_0 \} = 2$. Thus

$$\sigma_{I-} \operatorname{depth}_R R < \sigma_{I-} \operatorname{dim}_R R < \operatorname{dim} R.$$

DEFINITION 3.4. Let R be a Noetherian ring, and M be a finitely generated R-module. We say that M is a σ -Cohen-Macaulay (σ_- CM) module if $T_0 \subseteq \operatorname{Supp}_R(M)$ and σ_- depth_R $M = \sigma_- \dim_R M$, or if $T_0 \not\subseteq \operatorname{Supp}_R(M)$. If R itself is a σ_- CM R-module we say that R is σ_- CM ring.

PROPOSITION 3.5. Let (R, \mathfrak{m}) be a local ring and M be a finitely generated R-module. Then M is a CM module if and only if M is a $\sigma_{\mathfrak{m}}$ -CM module.

Proof. We may assume that $M \neq 0$, thus $T_0 = \{m\} \subseteq \operatorname{Supp}_R(M)$; $\sigma_{\mathfrak{m}} - \dim_R M = \dim_{R_{\mathfrak{m}}} M_{\mathfrak{m}} = \dim M$ and $\sigma_{\mathfrak{m}} - \operatorname{depth}_R M = \operatorname{depth}_R M$.

PROPOSITION 3.6. If for all ideals I of R, R is σ_I -CM, then R is CM. Conversely, if R is a CM ring then R is σ_J -CM, for all unimxed ideal J of R.

Proof. Let I be an ideal of R. We have

$$\begin{split} \sigma_{I-} \mathrm{depth}_R \, R &= \mathrm{depth}(I,R) \leq htI = \inf\{ht\mathfrak{p} : \mathfrak{p} \in T_0\} \\ &\leq \sup\{ht\mathfrak{p} : \mathfrak{p} \in T_0\} = \sigma_{I-} \mathrm{dim}_R \, R \quad (T = V \ (I)). \end{split}$$

If R is σ_I -CM, then depth(I,R)=htI, so that R is CM. Conversely, if R is CM ring and J an unmixed ideal, then for any \mathfrak{p} and \mathfrak{q} in $T_0(T=V(J))$, we have $ht\mathfrak{p}=ht\mathfrak{q}$ and by the above relations σ_{J-} depth $_R R = \sigma_{J-}$ dim $_R R$.

PROPOSITION 3.7. (i) If M is a finitely generated torsion R-module, then M is a σ -CM module.

- (ii) Let $\mathfrak{p} \in T_0$ and M be an R-module. If $M_{\mathfrak{p}}$ is a non-zero finitely generated $R_{\mathfrak{p}}$ -module, then $M_{\mathfrak{p}}$ is CM if and only if $M_{\mathfrak{p}}$ is a $\sigma(\mathfrak{p})$ -CM $R_{\mathfrak{p}}$ -module.
- *Proof.* (i) We may assume that $M \neq 0$ and $T_0 \subseteq \operatorname{Supp}_R(M)$. It is clear from Remark 2.2 (iv) and Corollary 3.2.
 - (ii) Let $\mathfrak{p} \in T_0 \cap \operatorname{Supp}_R(M)$. Then
 - $\sigma(\mathfrak{p}) \operatorname{depth}_{R_{\mathfrak{p}}} M_{\mathfrak{p}} = \operatorname{depth}_{R_{\mathfrak{p}}} M_{\mathfrak{p}} \quad \text{and} \quad \sigma(\mathfrak{p}) \dim_{R_{\mathfrak{p}}} M_{\mathfrak{p}} = \dim_{R_{\mathfrak{p}}} M_{\mathfrak{p}}.$

PROPOSITION 3.8. Let M be a σ -CM R-module and $T_0 \subseteq \operatorname{Supp}_R(M)$. Then for all $\mathfrak{p} \in T_0$, $M_{\mathfrak{p}}$ is a CM $R_{\mathfrak{p}}$ -module.

Proof. Note that

$$egin{aligned} \sigma_- \operatorname{depth}_R M & \leq \inf \{ \sigma(\mathfrak{p})_- \operatorname{depth}_{R_{\mathfrak{p}}} M_{\mathfrak{p}} : \mathfrak{p} \in T_0 \} \ & = \inf \{ \operatorname{depth}_{R_{\mathfrak{p}}} M_{\mathfrak{p}} : \mathfrak{p} \in T_0 \} \ & \leq \sup \{ \dim_{R_{\mathfrak{p}}} M_{\mathfrak{p}} : \mathfrak{p} \in T_0 \} = \sigma_- \dim_R M. \end{aligned}$$

Since M is σ -CM then $\inf\{\operatorname{depth}_{R_{\mathfrak{p}}} M_{\mathfrak{p}} : \mathfrak{p} \in T_0\} = \sup\{\dim_{R_{\mathfrak{p}}} M_{\mathfrak{p}} : \mathfrak{p} \in T_0\}$ so that $\operatorname{depth}_{R_{\mathfrak{p}}} M_{\mathfrak{p}} = \dim_{R_{\mathfrak{p}}} M_{\mathfrak{p}}$, for all $\mathfrak{p} \in T_0$.

PROPOSITION 3.9. Let M be a non-zero finitely generated R-module with $\sigma_{-}\dim_{R} M < \infty$. If a_{1}, \ldots, a_{n} is an M-sequence in $\bigcap_{\mathfrak{p} \in T_{0}} \mathfrak{p}$, then M is σ -CM if and only if $M/(a_{1}, \ldots, a_{n})M$ is σ -CM.

Proof. We may assume that $T_0 \subseteq \operatorname{Supp}_R(M)$, so that the result is clear by Proposition 1.7 and Proposition 2.5.

PROPOSITION 3.10. Let S be a multiplicatively closed subset of R such that $\mathfrak{p} \cap S = \emptyset$, for all $\mathfrak{p} \in T_0$. If M is a σ -CM R-module, then $S^{-1}M$ is a $S^{-1}\sigma$ -CM module over $S^{-1}R$.

Proof. For $\mathfrak{p} \in T_0$ $(S^{-1}M)_{S^{-1}\mathfrak{p}} = M_{\mathfrak{p}}$, thus $T_0 \not\subseteq \operatorname{Supp}_R(M)$ if and only if $(T^{\phi})_0 \not\subseteq \operatorname{Supp}_{S^{-1}R}(S^{-1}M)$. Assume that $M \neq 0$ and $T_0 \subseteq \operatorname{Supp}_R(M)$. By [4, Proposition 3.2], we have

$$\sigma_{-} \operatorname{depth}_{R} M \leq S^{-1} \sigma_{-} \operatorname{depth}_{S^{-1}R} S^{-1} M$$

and by Corollary 3.2 $S^{-1}\sigma_{-} \operatorname{depth}_{S^{-1}R} S^{-1}M \leq S^{-1}\sigma_{-} \dim_{S^{-1}R} S^{-1}M$. Since M is σ -CM then by Proposition 2.6

$$S^{-1}\sigma_{-} \operatorname{depth}_{S^{-1}R} S^{-1}M = S^{-1}\sigma_{-} \dim_{S^{-1}R} S^{-1}M.$$

PROPOSITION 3.11. R is σ -CM if and only if R[X] is σ_{ϕ} -CM.

Proof. By Proposition 1.8 and Proposition 2.7 the statement is obvious.

PROPOSITION 3.12. Let M be a finitely generated R-module with $\sigma_{-}\dim_{R} M = n$ $(n \in \mathbb{N}_{0})$ such that $T_{0} \subseteq \operatorname{Supp}_{R}(M)$. Set $k = \sup\{i \in \mathbb{N}_{0} : H_{\sigma}^{i}(M) \neq 0\}$. Then M is σ -CM and $T_{0} \cap \operatorname{Supp}_{R}(H_{\sigma}^{k}(M)) \neq \emptyset$ if and only if $H_{\sigma}^{i}(M) = 0$, for all $i \neq n$.

Proof. By Theorem 2.8, $\operatorname{H}_{\sigma}^{n}(M) \neq 0$ and n = k. Now since M is σ -CM thus $\operatorname{H}_{\sigma}^{i}(M) = 0$ for all i with i < n. The converse is obvious.

Acknowledgment: The second author wishes to thank K. Divaani-Aazar for his careful reading of the manuscript and excellent comments.

References

- 1. M. H. Bijan-Zadeh, Torsion theories and local cohomology over commutative Noetherian rings, J. London. Math. Soc. Vol. 19, No. 2 (1979), 402-410.
- J. L. Bueso, B. Torrecillas and A. Verschoren, Local cohomology and localization, Pitman Research Notes in Mathematical Series No. 226 (Longman, Harlow 1990).
- 3. P. J. Cahen, Torsion theory and associated primes, Proc. Amer. Math. Soc. 38 (1973), 471-476.
- 4. P. J. Cahen, Commutative torsion theory, Trans. Amer. Math. Soc. 184 (1973), 73-85.
- N. T. Cuong, P. Schenzel, N. V. Trung, Verallgemeinerte Cohen-Macaulay Modulen, Math. Nachr. 85 (1978), 57-73.
- I. G. Macdonald and R. Y. Sharp, An elementary proof of the non-vanishing of certain local cohomology modules, Quart. J. Math. Oxford Vol. 23, No. 2 (1972), 197-204.
- 7. E. Matlis, Modules with descending chain condition, Trans. Amer. Math. Soc. 97 (1960), 495-508.

- 8. H. Matsumura, Commutative Ring Theory, Cambridge University Press, Cambridge, 1986.
- 9. L. Melkersson, On asymptotic stability for sets of prime ideals connected with the powers of an ideal, Math. Proc. Camb. Phil. Soc. 107 (1990), 267-271.
- 10. R. Y. Sharp, On the attached prime ideals of certain Artinian local co-homology modules, Proc. Edinburgh Math. Soc. Vol. 24, No.2 (1981), 9-14.