ON UNIFORMITIES OF BCI-ALGEBRAS

JAE KYUN PARK AND EUN HWAN ROH

Yonam College of Engineering, Chinju 660-750, Korea.

Dept. of Mathematics Education, Research Institute of Natural Science,
Gyeongsang National University, Chinju 660-701, Korea.

E-mail: ehroh@nongae.gsnu.ac.kr.

Abstract In this paper, we construct the uniformity of a BCI-algebra.

1. Introduction

By a BCI-algebra we mean an algebra (X; *, 0) of type (2,0) satisfying the following axioms:

- (I) $(x * y) * (x * z) \leq (z * y)$,
- $(II) x * (x * y) \leq y,$
- (III) $x \leq x$,
- (IV) $x \leq y$ and $y \leq x$ implies x = y,

for all $x, y, z \in X$. We can defined a partial ordering \leq by $x \leq y$ if and only if x * y = 0.

In what follows, X would mean a BCI-algebra unless otherwise specified. We first recall some definitions and properties.

DEFINITION 1.1. ([5]). Let A be a nonempty subset of X. Then A is called to be an *ideal* of X if, for all $x, y \in X$,

- (i) $0 \in A$,
- (ii) $x * y \in A$ and $y \in A$ imply $x \in A$.

DEFINITION 1.2. ([5]). Let A be a subset of X. Define the ideal of X generated by A, denote A >, to be the intersection of all ideals of X which contain A.

Received October 15, 1997.

¹⁹⁹¹ AMS Subject Classification: 06F35, 03G25, 54E15.

Key words and phrases: ideal, uniform structure.

The second author was supported by the Korea Research Foundation, 1997.

LEMMA 1.3. ([5, 6]). Let A be a subset of X and there exists some $x \in A$ satisfying $x \ge 0$. Then A > a be described as the set of all $y \in X$ such that $(\cdots ((y*a_1)*a_2)*\cdots)*a_n = 0$ for some $a_1, a_2, \cdots, a_n \in A$.

DEFINITION 1.4. ([7]). Let M be any nonempty set and let U and V be any subsets of $M \times M$. Define

 $U \circ V = \{(x,y) \in M \times M | \text{ for some } z \in M, (x,z) \in U \text{ and } (z,y) \in V\},$

$$U^{-1} = \{(x, y) \in M \times M | (y, x) \in U\},$$

$$\triangle = \{(x, x) \in M \times M | x \in M\}.$$

By a uniformity on M we mean a nonempty collection K of subsets of $M \times M$ which satisfies the following conditions:

 $(U_1) \triangle \subset U$ for any $U \in K$,

 (U_2) if $U \in K$, then $U^{-1} \in K$,

 (U_3) if $U \in K$, then there exists a $V \in K$ such that $V \circ V \subset U$,

 (U_4) if $U, V \in K$, then $U \cap V \in K$,

 (U_5) if $U \in K$ and $U \subset V \subset M \times M$, then $V \in K$.

The pair (M, K) is called a uniform structure.

LEMMA 1.5. ([2]). For any $x, y \in X$ and any positive integer n, we have $0 * (x * y)^n = (0 * x^n) * (0 * y^n)$, where $x * y^n$ denote the element $(\cdots ((x * y) * y) * \cdots) * y$ (y occurs n times).

In this paper, we construct the uniformity of BCI-algebras which is a generalization of one in the sense of Alo and Deeba ([1]).

2. Main Results

THEOREM 2.1. Let A be an ideal of X. For every natural number n, we define

 $U_A = \{(x,y) \in X \times X | 0 * (x*y)^n \in A \text{ and } 0 * (y*x)^n \in A\}$ and let

 $K^* = \{U_A | A \text{ is an ideal of } X\}.$

Then K^* satisfies the conditions $(U_1) - (U_4)$.

Proof. Let $(x,x) \in \Delta$. Since $0 * (x * x)^n = 0 * 0^n = 0 \in A$ for any ideal A, it follows that $(x,x) \in U_A$ for every $U_A \in K^*$, which proves that (U_1) holds.

For any $U_A \in K^*$, $(x,y) \in U_A$ if and only if $0 * (x * y)^n \in A$ and $0 * (y * x)^n \in A$ if and only if $(y,x) \in U_A^{-1}$ if and only if $(x,y) \in U_A^{-1}$. Hence $U_A^{-1} = U_A \in K^*$, which is (U_2) .

Assume that $U_A \in K^*$. Let $\mathcal{A} = \{I_\alpha | \alpha \in \Lambda\}$ be a collection of ideals of X which is contained in A. \mathcal{B} is a subcollection of \mathcal{A} such that at least one member of \mathcal{B} contains an element $x \geq 0$. Let J be the ideal generated by $\bigcup_{\beta} I_{\beta}$, where $I_{\beta} \in \mathcal{B}$. Now, we show

that $A' = U_J$ is such that $U_J \circ U_J \subset U_A$. Let $(x,y) \in U_J \circ U_J$. The definition of $U_J \circ U_J$ implies that for some $z \in X$, $(x,z) \in U_J$ and $(z,y) \in U_J$. That is, $0 * (x*z)^n, 0 * (z*x)^n \in J$ and $0 * (z*y)^n, 0 * (y*z)^n \in J$. Thus we have

$$(0*(y*x)^n)*(0*(y*z)^n)$$
= $((0*y^n)*(0*x^n))*((0*y^n)*(0*z^n))$
 $\leq (0*z^n)*(0*x^n)$
= $0*(z*x)^n$.

Since J is an ideal, $0*(y*x)^n \in J$. Similarly we can show that $0*(x*y)^n \in J$. Since J is the minimal ideal containing $\bigcup_{\beta} I_{\beta}$ and since $\bigcup_{\beta} I_{\beta} \subset A$, it follows that $J \subset A$. Hence $0*(x*y)^n, 0*(y*x)^n \in A$. Thus $(x,y) \in U_A$ and so $U_J \circ U_J \subset U_A$, which is (U_3) .

Finally we prove (U_4) . This will follow from the observation that $U_A \cap U_{A'} = U_{A \cap A'}$. Let $(x,y) \in U_A \cap U_{A'}$. Then $(x,y) \in U_A$ and $(x,y) \in U_{A'}$. This implies that

$$0*(x*y)^n, 0*(y*x)^n \in A$$
 and $0*(x*y)^n, 0*(y*x)^n \in A'$.

Hence $0 * (x * y)^n$, $0 * (y * x)^n \in A \cap A'$ and this implies that $(x,y) \in U_{A\cap A'}$. So $U_A \cap U_{A'} \subset U_{A\cap A'}$. Likewise we can show that $U_{A\cap A'} \subset U_A \cap U_{A'}$. Thus $U_A \cap U_{A'} = U_{A\cap A'}$ and this proves requirement (U_4) .

THEOREM 2.2. Let $K = \{U \subset X \times X | U \supset U_A \text{ for some } U_A \in K^*\}$ where $K^* = \{U_A | A \text{ is an ideal of } X\}$. Then K satisfies a uniformity on X. The pair (X, K) is a uniform structure.

Proof. Using Theorem 2.1, we can show that K satisfies the conditions $(U_1) - (U_4)$. To prove (U_5) , let $U \in K$ and $U \subset V \subset$

 $X \times X$. Then there exists a $U_A \in K^*$ such that $U_A \subset U \subset V$, which implies that $V \in K$. This completes the proof.

DEFINITION 2.3. For $x \in X$ and $U \in K$, we define

$$U[x] = \{y \in X | (x,y) \in U\}.$$

THEOREM 2.4. For each $x \in X$, the collection $\mathcal{U}_x = \{U[x]|U \in K\}$ forms a neighborhood base at x, making X a topological space.

Proof. First note that $x \in U[x]$ for each x. Second,

$$U_1[x] \cap U_2[x] = (U_1 \cap U_2)[x],$$

which means that the intersection of neighborhoods is a neighborhood. Finally, if $U[x] \in \mathcal{U}_x$ then by (U_3) there exists a $E \in K$ such that $E \circ E \subset U$. Then for any $y \in E[x], E[y] \subset U[x]$, so this property of neighborhoods is satisfied.

References

- R. A. Alo and E. Y. Deeba, A note on uniformities of a BCK-algebra, Math. Japon. 30 (1985), 237-240.
- 2. W. Huang, Nil-radical in BCI-algebras, Math. Japon. 37 (1992), 363-366.
- 3. K. Iséki, On a quasi-uniformity on BCK-algebras, Math. Seminar Notes 4 (1976), 225-226.
- 4. K. Iséki, Introduction of a quasi-uniformity on BCK-algebras, Math. Seminar Notes 4 (1976), 229-230.
- K. Iséki and S. Tanaka, An introduction to the theory of BCK-algebras, Math. Japon. 23 (1978), 1-26.
- S. M. Wei, Y. B. Jun and E. H. Roh, A note on ideals in BCI-algebras, Math. Japon. 42 (1995), 69-73.
- 7. S. Willard, General Topology, Addison-Wesley Publishing Co. (1970).