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Abstract Exact definitions of four kinds of points shall be defined asso-
ciated to Lie algebras L over an algebraically closed field F' of prime char-
acteristic p > 0. Next, rough bound of dimensions for L-irreducible modules
associated to subregular points shall be established by taking advantage of
Premet’s result.

1. Introduction

In this paper, we are mainly concerned with irreducible repre-
sentations of any finite dimensional restricted Lie algebra L with
some mild restriction, which shall be specified later on, over an
algebraically closed field F of nonzero characteristic p.

Along the way in the sequel, we are impelled to define 4 kinds
of points, namely regular point, subregular point, P-regular point
and P-point from the standpoint of dimensionality as in [24],
which shall be recapitulated in section 2.

Most notations are those shown up in [24] and [26]. Inciden-
tally, let L be a finite dimensional retricted Lie algebra over F
and V an irreducible nonretricted L-module, i.e., u(L, X)-module
for some X € L*. Furthermore, we let m : U(L) — gi(V) be
its associated representation of V. By dint of Jacobson’s density
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theorem, U(L)/Ker m = M,(F) with n = dimpV as associa-
tive algebras. Since ¢(L) is Noetherian, Ker m becomes a finitely
generated U(L)-module.

We meet with 2 cases in connection with such a situation. First,
there is a case when generators of Ker m C 3(U(L)). Secondly,
the other case may happen, i.e., generators of Ker m ¢ 3(U(L)).
As soon as some necessary nomenclature is defined, we shall see
easily that in the former case V is obtained from some subregular
point in some affine space, and in the latter case V is obtained
from a regular point (Proposition (5.3)).

For a Lie algebra L assumed in the first paragraph, we intend to
verify that if L, is a proper subalgebra of L and M is an irreducible
u(L, X)-module obtained from a subregular point, then we have

pm' <dimM <p™ —rp

for some r € Z>°, where p™ = [QU(L)) : Q(3(U(L)))] and p™
is a divisor of any irreducible u(L,, X|r,)-module in M. This shall
be established in section 4 following the support variety in section
3.

Finally, a criterion for a point to be subregular shall be fittingly
made up.

2. Definitions of 4 kinds of points

Let L be a finite dimensional restricted Lie algebra over F
with a basis {2;|1 < i < n} ; let O(L) be the algebra generated
by 1 and {z? — 2P} U 3(L), ie., O(L) = algr({z? - xﬁp]} U
3(L)). It is easily known that O(L) becomes the Noether nor-
malization of 3(U(L)) =: 3, whence for some s;’s (1 < i < n')
which are integral over O(L), 3(U(L)) = O(L)[s1," -+ ,8n']. Let-
ting h : O(L)[Xy, -, Xn] = 3(U(L)) be the evaluation alge-
bra homomorphism sending X; to s; for 1 < ¢ < n', we ob-
tain 3(U(L)) = O(L)[s1,  ,8n] = OL)[ Xy, -+, Xp]/Ker h
which is nothing but a coordinate ring on a normal algebraic va-
riety V(Ker h) of degree n [48]. In this context an arbitrary
maximal ideal of 3(U(L)) can be represented by a coordinate
(€1, + ,&n M1, -+, nr), Where m;’s are roots of Ker h = 0 for
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independent variables {;’s (1 < j < n) corresponding to variables
k) — :z:g.p].

Following Zassenhaus, we have a mapping ¢ going from the
set of all finite dimensional irreducible L-modules onto Spec,,(3)
which is the set of all maximal ideals of 3 := 3(U(L)). Here
shall be defined 4 kinds of points in this spectrum as follows :
we call (0, --,0,71, - ,nn) & P — point since it gives rise to
P—representations ; in particular, we mean, by a regular P —
point, that it is a P-point and its associtated irreducible mod-
ule has dimension p™ ; the point (&1, - ,&n, M1, - ,Nps) with
dimp(U(L)/m,) = p®™ gives rise to a p™-dimensional S—represen-
tation (S € L*\{0}) [43], where m; is just a maximal 2-sided ideal

containing the ideal Y\, U(L)(z? ——x &)+ i U(L) (s5~m;)
with §;’s and 7;’s in F satisfying Ker h = 0 if they replace zh — EP]
and s;'s respectively, so that the point ({1, - ,&n, 71, , ")

shall be called a regular point ; the rest case gives rise to S—repre-
sentation (S € L* \ {0})-modules of dimension < p™, so that we
shall call such a point a subregular point [24].

3. Support variety

In this section, we shall prove the theorem (3.1) by slightly
modifying Premet’s proof in [26] and [27].

For a vector space V over F, V shall denote the F-vector space
with underlying additive group V and with f € F acting through
multiplication by p. It is known that

= D Batyly,0)(F F)”

120

turns out to be a commutative associative F-algebra by the Yoneda
product [26]. It also becomes a Noetherian F-algebra by [26]. The
affine algebraic variety associated with H(L) shall be denoted by
|L|. For each ¢ € L*, we have a Split Lie algebra extension F & L
with the [p]-mapping given by (f, )"l = (o(1)?,1P)) ¥(f,1) € Fo
L. Following Hochschild, the Hochschild map L* — Ext? ZLoy(FF)”
from this construction extends multiplicatively to a natural al-
gebra homomorphism h* : S(L*) — H(L). Putting h : |L| —
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Spec(L*) = L, Jantzen obtained h(|L|) = Np(L) with N,(L) =
{z € L|z®! = 0} [16,Satz 2.14]. For a finite dimensional u(L, X)-
module M with X € L*, the graded vector space

Hx(M) := @ Ezt] | » (M, M)"
>0

is acted by the graded algebra H(L). Denoting by Jas the an-
nihilator in H(L) of the image of idy in Exty g x)(M, M) we
are informed that Jps becomes a graded ideal of H(L) ; putting
|Lip = {€ € |L]:j(§) =0 Vj € Jp}, we see that the morphism
h: |L| — Np(L) is finite, so that A(|L|a) becomes a Zariski closed
conical subset of Np(L) [26]. Putting V(M) := h(|L|ar), we call
it support variety of M.

Hereafter, we let G be a semisimple and simply connected F-
group with g := Lie(G). Now set Zy(X) := {zx € g|X([z, g]) = 0}.
We denote by R the root system of G relative to a maximal torus
T C G. Jantzen defined that p is special for G if either p = 2 and
R has a component of type By, C; for [ > 2 or Fy, or p = 3 and
R has a component of type G3. Premet has shown the following
theorem in [26]. Henceforth p is assumed to be not special for G
unless otherwise specified.

THEOREM (3.1). Let G and g be as above and p not special

for G. If M is a nonzero g-module with p-character X € g*, then
Va(M) C Ny(g) N Zg(X).

It is not difficult to know that in verifying this theorem, we may
suppose that G is simple and simply connected. Premet showed
this by taking advantage of the following propositions :

PROPOSITION (3.2). Let G % SL(2) and f € g*\{0}. Let & :=
(AdG) - ez {0} for the Cartan decomposition g = t® 3y . p Feq
with respect to a maximal torus T with the maximal root &, where
t = Lie(T). We now define by : gxg — F by bs(x,y) = f([z, y])*+
4f(z)f(y){z,y), where <, > is Ad G-invariant symmetric bilinear
form defined at page 240 in [26]. Then bslexe # 0.
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PROPOSITION (3.3). Suppose that G % SL(2). Suppose fur-
ther that f € g* has a nilpotent element x of g such that f([z, g]) #
0. Then there exists e € £ for which f(e) = 0 and f([z,¢€]) # 0.

Premet used proposition (3.2) only to establish proposition
(3.3), but it turned out that the proof of proposition (3.2) is
wrong, so that he gave out the corrigenda and addenda in [27]
concerning such a fact.

In the mean time, we scrutinized the proof of proposition (3.3)
verbatim and found that it can be generalized more or less to the
algebraic groups, under consideration in [26], including SL(2).
Furthermore we noticed that proposition (3.2) is not necessarily
essential to prove proposition (3.3). Such a fact shall be confirmed
in proposition (3.3) /.

PROPOSITION (3.3)". Suppose that G and g are as they are in
the remark preceding theorem (3.1). Suppose further that f € g*
has a nilpotent element x of g such that f([z, g]) # 0 and such that
f(e) =0 for e € £ does not force that e has no h-component with
h € t. Then there is e € £ for which f([z,e]) # 0 and f(e) = 0.

Proof. Put r := dim g and €7 := {(x, -, 2, )|z; € £} It
becomes an irreducible affine variety. We denote by § the ring of
regular functions on £7. For ¢, j with1 < i < j < r, we define ¢, ;
in by @, ;(xy, -, 2r) = (@i, ;). Let Vi := {x € E"|p; () # 0}
and Y; := {(z1,---,2,) € E"|f(z;) # 0} for i« < r. By Lemma
(2.1) and Lemma (2.3) (i) in [26], these are nonempty Zariski open
subsets of £7. We define f, € g* by f.(y) = f([z,y]) for y € g.
Obviously f, # 0 by our assumption. Suppose that the linear
functions f and f, are not linearly independent ; then for some \ €
F, f. = Af sothat f((adz)"(y)) = A" f(y) for every y € g yielding
A = 0, which contradicts the fact that f, # 0. So they are linearly
independent. Set £, = {(z1,- " ,z,) € £"|z1, -, 2, span g}.

Obviously £, becomes a nonempty Zariski open subset of £7.
The variety £" being irreducible, the set E, := £/, N (Nic;Vi5) N

(N;Y;) is nonempty. Suppose that (e;, - ,e,) € E, and consider
the 2 x r matrix

_ [ fler) flea) -+ fler)
Mf“(fm(ell) fe(e2) -+ fm(er)).
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Since f and f. are linearly independent, rk(M;) = 2, so that for

some i, j
f(ei) f(ej) :;é 0

fz,e]) fllze))| 7
We have (e;,e;) # 0, f(ei;) # 0, f(e;) # 0 from the definition of
E,. Here we may put e; := ez. For some one dimensional torus
h(s) C T, (Adh(s))e, = s<™8>¢, for every r € R. We decompose
g into weight spaces relative to Ad h(t) giving a Z-grading g =
g(—2) @ g(—1) ® g(0) & g(1) ® g(2). Obviously, g(+2) = Feys.
Since <,> is Ad h(s)-invariant, €0, _; g(i) = g(2)*. Hence e; =
—(ei,ej)e-a +u with u € @, _; 6(7). Let e;(s) = (Adza(s)) - e;
; then e;(s) € £ Vs € F, and incidentally

e;(s) = e; + slei, e5] — (ei, e)5%€;,
f(e;(s)) = ao + say + s%ay,

fm(ej(s)) = by + sby + 8252

with ap = f(e;), a1 = f([ei,e;5]), a2 = —(ei,e;)f(e;) and by =
[z, e5]), by = f([z, [ei, €5]]), b2 = —(es, €;) f([z, €]). So there ex-
ist nonzero A1, A; € F (not necessarily distinct) satisfying axA\? +
a1Ai + ag = 0 for i = 1,2. Now suppose that for i = 1,2, byA? +
biAi+bg = 0. If by # 0, we have by /by = ag/az (otherwise slightly
modify the set E, using nonzero functions 4f;(e;){e;, ;) f(e;)? +
2f-(les, ;1) f([ei, e5]) f(ei) — fz(es)f([es, €])* defined on € x & to
lead to a contradiction), whence (e;, e;){f(e;) f([x, e;])
—f(e;)f([x,ei])} = 0, contradicting our choice of ¢; and e;. If
bz = 0, then by := —(ej,e;)f([x,e;]) # 0. In this case, we
may put e; := ez instead of e;. Then e; = ~(ej,e;)e_5 +u =
—(es,ej)e_g+ufor some u € @, _, g(i). Let e;(s) = (Ad z5(s))e;
; then e;(s) € £ Vs € F, and so

ei(s) =€; + S[Gj,ei] - <ei,€j>526]‘,
Flei(s)) = flei) + sf(lej, &) — s*(es, ;) fe;) = ab + sa) + s2ab,
and fz(ei(s)) = by + sby + s°b),

where ag = f(e;), ay = f(le;,ei]), a5 = —(es,e)f(e;) and by =
f([z,e), b = f([z, (e, ei]]), by = —(ei,e;) f([z, e;]). Proceeding
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as in the above case, we meet with a contradiction. Hence we may
suppose that either by A? + by A1 + by # 0 or bjAZ + bj Ay + b} # 0.
Now put e = ¢;(A1) or e;(A;). Then f(e) =0 and f([z,e]) # 0 as
claimed.

In fact, proposition (3.3)' holds in all characteristic p including
p = 0 and special cases. Furthermore the hypothesis is always
satisfied for any f € g* having a nilpotent element = such that
f([z, g]) # 0 for any G 2 SL(2). Even for G = SL(2), our propo-
sition is right if f satisfies the hypothesis.

4. Revision of Premet’s theorem

Now we are prepared to verify theorem (3.1). First, we need
another proposition to do this.

PROPOSITION (4.1). Suppose that e € £\ {0} and n € N,(g)
; then [n,e]lP! = (n,e)?~![n, e].

Proof. See Lemma (3.4) in [26].

Suppose now that X € g* and M is a finite dimensional u(L, X)-
module. By the previous remark, G may be assumed to be sim-
ple. Assume that z € Np(g) and X([z,g]) # 0. We contend
that u(z, X')-module M|, (, x) becomes free. Here M|, x) is the
vector space M as u(z, X')-module. Putting A = X(z), we see im-
mediately that F[X]/(X — A\)? 2 u(z, X') as associative algebras.
Hence we have only to show that the endomorphism z — A-idps is
similar to a direct sum of nilpotent Jordan blocks of order p, which
is equivalent to the equality dimKer(z— \-idp) = dimM /p since
(z — A-idp )P = 0. By dint of our proposition (3.3)’, whatever
G is in our situation and G % SL(2), we have e € £ satisfying
f(e) = 0 and f([e,z]) # 0. Put {e,z) =: v. Since e?(M) = 0,
we have that M) := Ker e becomes a nonzero subspace of di-
mension > dimM/p. We denote by U(; the ith component of the
standard filtration of U(g). Let M, := Uy - M(gy for ¢ > 1 with
M_y; = 0. We denote the normalizer of Fe in g by n. From
Lemma (2.4) in [26] and the fact that el?! = 0 if p = 2, we have
le, [ex]] = —2(e, z)e for arbitrary z € g, so that [e, g] C n. Hence
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we have eU(;y C Ugye + U-1yn+ U=y for i > 1. Next
e(M)) C My for i >0 *

because M) is n-invariant. By the identity

le: [z, [z, e]] + 2v2] = ~ [z, [¢, [e, 2]]] + 2v[e, 2]

= 2v{z, €] — 2v[z,e] = 0,

we also get
[z, [z, €]] = —2vz (mod n). (**)

Assuming m € M(g) \ {0} and 0 < k < p — 1, we contend that
zk: ‘m g M(k-—l)' (***)

It is obviously right for & = 0. Next suppose that k¥ > 1 and
2k-1.y ¢ Mik—2) for every v & Mgy \ {0}. If z¥ . m € M1y, we
have then e - z*¥ - m ¢ M y2y by virtue of (*). Combining (**)
and the formula e - 2* = Zfr_o(—l)*(':) Z*=((ad 2)i(e)) yields

kzk“l([e, Z] - (k - l)u)m S M(k—-2)~ (****)

Put Ay :=the endomorphism [e, z] - (k—1)v-idy. Since [e, 2] € n,
we obtain Ax(Mg)) C M(g). By virtue of proposition (4.1), we
have [e, 2]P = vP~ e, 2] + aP - idy with a = f([e, z]). Since (k —
1)P = (k—1)(mod p), we have AL —vP=1 A = [e, z]P — vP~1[e, 2] =
a? - idps. Being a # 0, Ay becomes an invertible endomorphism
of M. Hence by (****), zk-lm/ ¢ M2 is obtained for some
m' € M) \ {0}, which contradicts our assumption, so that we
have verified (***) by induction on k.

Suppose now that {mq, - ,Mn} be a basis of M0). Defining
S={ "m0 <i<p-1,1<j < n}, we would like to
prove that 5 becomes a basis of M. Supposing that S is linearly
dependent, we have m € Mg, \ {0} and k < p — 1 satisfying 2* -
me Y ! 2'(M(g)). But then 2* - m ¢ M 1), which contradicts
to (***). So S being linearly independent, we have dimM <
p-dimM() < dimM the last inequality coming from e? - M = (.
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Hence dimM ) = dimM/p, so that S becomes a basis of M.
Putting § == {(z ~ A -idy)' - m;0 <i<p-1,1<j < n),
we easily see that S is also a basis of M as well as S, whence
Ker(z—A-idy) = (2 — A-idp)P~H(M(g)). Hence dim Ker(z — A-
idy) = dimM/p. Hence M |y(z,x) becomes a free u(z, X')-module,
which in turn says that z ¢ V3(M) by virtue of Lemma (3.1) in
(26]. Hence we conclude that Vg(M) C Z4(X) N N,(g) holds when
G % SL(2). For the proof of the case G = SL(2), see the proof in
[26].

5. Conclusion

Now let G and g be as in theorem (3.1). Premet has shown
very recently that theorem (3.1) may be further generalized to
the case when p is any prime in his paper [27], of which the fol-
lowing proposition is an immediate consequence. But in fact, [27]
is redundant since proposition (3.3)’ does imply theorem (3.1).

PROPOSITION(5.1). Let M be any u(g, X')-module obtained
from a subregular point. Then p|dimM for any prime p.

Proof. It is informed that V,(M) turns out to be V4(M) =
{z € M| M|y,(,x) is free }. So assuming the contrary, we have
then V(M) = N,(g), so that Z,(X) C N,(g) by [27]. But then
Ya € R, eg’] = 0 implies that X[e,,g] = 0. Since X # 0, there
exists h, € t such that X'(h,) # 0. But then for this o € R,
Xlea,e_a] = X(hy) # 0, so that X[e,,g] # 0 implying e, ¢
Z4(X) contradicting to e, € Np(g).

Now any irreducible u(L, X')-module V is isomorphic to (L)/m
for some left maximal ideal m of (L), where L is any finite dimen-
sional restricted Lie algebra over F. Since U(L) is Noetherian, m
becomes a finitely generated left ideal, so there exists » :=minimal
number of generators of m in m\ 3(U(L)).

PROPOSITION(5.2). Let L be any finite dimensional restricted
Lie algebra and L, any proper sub-Lie algebra contained in L.
Let V be any irreducible u(L, X)-module with * € L, such that
x-V #0andz = |y, z| for somey € L\ L,. Let p™ be the divisor
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of any irreducible u(L,, X|r,)-module in V for X|;, € L%\ {0}.
Then we have the inequalities :

(i) p™ < dimV < p™ —p™

(i) p™ < dimV < p™ —rp

(iii) 2p < dimV < p™ — 2p.

Proof. We first note that V can’t be an irreducible u(L,, X|, )-
module by virtue of [25]. So the first inequality (i) is trivial. Let
{z1,- - ,z,} be the set of minimal generators of m in m\ 3(U(L)).
Then noting the tower of subspaces

0Cc3UL))NmcC{3UL)Nnm}+zU(L) C---
c{3WEL)Nm} + . U(L) + - - + & U(L) = m,

(ii) is also straightforward. Since there is only a p-dimensional
non-restricted sly(F)-module, (iii) is also straightforward.

Finally we close this paper presenting some signal proposition
related to subregular points. Let L be any finite dimensional
restricted Lie algebra over F' and V be an irreducible u(L, X)-
module for some X’ € L*\ {0}. Let 7 : U(L) — gl(V') be the asso-
ciated representation of u(L, X’ )-module V. Then U(L)/Ker n =
M, (F) as F-algebras with n = dimgV by Jacobson’s density
theorem and Ker 7 is finitely generated since U/(L) becomes Noe-
therian.

PROPOSITION(5.3). Retaining notations as above, we have :

(i) Generators of Ker m ¢ 3(U(L)) if and only if V is obtained
from some subregular point in some affine space.

(ii) Generators of Ker n C 3(U(L)) if and only if V is obtained
from a regular point.

Proof. We first observe the identity

p#mE = [QU(L)) : QUO(L))]
= [RQWU(L)) : Q3)Q(3) : Q(O(L))]

e a2m dim L—2m
=p" Xp .

So if generators of Ker m C 3(U(L)) =: 3, then there exists a set
{y1, 92, -+ ypam } CU(L) satisfying (3ys + - - + Jypem ) ®3 F =
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U(L) @3 F = Mpym (F), the last being a matrix algebra of degree

pm

. The converse is also right from [Q(U(L)) : Q(3)] = p*™, so (ii)

is immediate. On the other hand, (i) is gotten by contrapositive
to (ii).
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