Membrane Filtration에 의한 약주의 저장성 증진
강미영·박영서·목철희·장학길
경원대학교 식품생물공학과

Improvement of Shelf-life of Yakju by Membrane Filtration
Mi-Young Kang, Young Seo Park, Chulkyoon Mok and Hak-Gil Chang
Department of Food and Bioengineering, Kyungwon University

Abstract
Quality changes of filter-sterilized Yakju were evaluated by filtration of Yakju through membranes followed by storing at 25℃ for 50 days. To evaluate quality changes of filter-sterilized Yakju, pH, titratable acidity, turbidity, and viable cell numbers of total bacteria, lactic acid bacteria, and yeast were measured. Titratable acidity, turbidity and viable cell numbers of non-sterilized Yakju increased, but pH profile decreased during the storage. In filter-sterilized Yakju, titratable acidity and turbidity did not change, while viable cells of total bacteria, lactic acid bacteria, and yeast were not detected during the storage. Addition of chitosan at the concentration of 0.1% (w/v) decreased the viable cell numbers significantly showing similar pH and titratable acidity profiles with non-sterilized Yakju.

Key words: Yakju, membrane filtration, shelf-life

서 론
약주는 고품질의 도입을 위해 전문의 장물의 영양의 효
모의 알코올발효가 동시에 진행되는 병행발효로 제조
하여 양조한 후 중류하지 않고 술을 음용하는 것으
로서 발효된 술에서 용수를 밝어서 많은 액을 취한 것
이다[9]. 우리나라 전통 주류의 명맥을 이어오고 있던
약주에 관한 연구는 그동안 거의 이루어지지 않았으
며 결과적으로 약주의 시장 적응력이 상실되어 80년
부터 90년까지 10년 사이에 약 80%의 국내 소비량
이 50%에서 20%로 급격하게 감소되었다[9]. 특히
1987년 이래 연간 소비의 급격한 감소추세가 계속되
고 있는데 이는 약주시장의 규모가 연쇄하여 주
질의 개선, 저장성 향상, 포장용기의 개선 등 시구의
여러 가지 술에 대한 대응이 신속히 이루어지지 못함
에 기인한다. 특히 현재 약주의 제조과정은 화합과정
을 거쳐지 않기 때문에 발효에 의한 미생물이 그
대로 선적함으로써 저장성이 매우 떨다는 문제점이
있다[9].

약주는 원료성분의 발효대사과정과 약조과정에서 생
산될 다양한 항미성분에 의하여 독특한 주류성분을
나타낼 수 있으나, 식성과정과 후처리과정 및 보존기
간 중 전통주 고유의 주류특성이 쉽게 쇠퇴되거나 손
실된다는 문제점이 제기되고 있다[10]. 발효대사과정중
에 생성된 간사부유물, 효모와 곰팡이 및 세균류 등의
미생물, 불용성 고탄생 등이 최종제품에 혼입되면서
혼탁물질과 군비생분을 생성하게 되므로 약주고유의
항미특성이 변성되고 전통주로서의 관능적 평가와 상
품적 가치가 퇴색된다[10].

최근 약주 제조업체에서 가열살균처리로 약주의 보
존성을 향상시키기 위한 노력이 계속되고 있으나 가
열살균은 약주를 고온에서 장기간 저장하는 것과 마
찬가지의 영향을 주는 것으로 열에 의해 약주 내용물
의 산화 및 분해가 촉진되어 이가 발생하고 단백질
등의 단백질에 의해 백탁의 생성과 더불어 맛에 영향
을 미쳐하며 항미성분의 손실 등을 야기한다. 한편 저온
살균법 역시 혼탁물질과 이취물질의 생성을 피할 수
있고, 항미성분이 소실되므로 약주의 관능적 평가를
떨어뜨리는 근본적인 문제점을 제기하고 있다.

따라서 본 연구에서는 가열살균공정이나 저온살균
법 대신 약주의 유용한 발효성분으로 보존하고 미생물
과 변성성분들을 선택적으로 제거할 수 있는 맥주의
제조공정을 이용하여 약주내 미생물을 제거시킴으
로써 열에 의한 향미의 변연을 감소시키며 약주 본래의 향미를 유용화실험에도 장기간 지속시키기 위한 공정을 개발하고자 한다. 이를 위하여 약주를 맥여과하여 제균한 후 맥여과 약주의 제균수도와 저장장 품질변화를 측정하였다.

재료 및 방법

약주

본 실험에 사용한 약주는 김포향조공사에서 제조한 것으로 발효 후 나일론백으로 여과한 약주를 실현재료로 사용하였다.

여과막의 선정

약주에 존재하는 미생물들을 효과적으로 제거하기 위하여 맥의 제질과 pore size가 서로 다른 여과막을 사용하여 500 mL의 비산균 약주모액을 1000 mL의 vacuum flask와 vacuum aspirator를 이용하여 50 mmHg의 감압하에서 여과설균하였다. 사용된 여과막은 직경 47 mm의 0.45 μm nitrocellulose, 0.22 μm nitrocellulose, 0.45 μm polyvinylidene difluoride (PVDF), 0.22 μm PVDF, 0.45 μm nylon이었다.

여과속도는 비산균 약주모액 500 mL가 여과막을 통과할 때의 총 여과시간을 측정한 후 단위시간(초)당 여과된 약주의 양으로 계산하였다.

막여과 약주의 저장성 실험

막여과 약주의 저장성은 25℃에서 일정기간동안 저장하면서 저장기간에 따른 약주의 pH, 저장수도, 맥도, 420 nm의 흡광도, 세균수, 철산균수, 효모수 등 미생물수를 측정하여 평가하였다.

키토산 칩에 의한 약주의 저장성 실험

약주의 상균과 동시에 약주에 기능성을 부여하기 위하여 비산균 약주에 일정농도의 키토산을 점침한 후 25℃에서 일정기간동안 저장하면서 저장기간 동안의 철산균수, 효모수, 흡광수를 측정하여 키토산의 제균력을 조사하였다. 이때 사용된 키토산은 제조점에서 뿐만한 수용성 키토산으로서 종합량은 4000ppm이었다.

여과조제에 의한 균체의 총작력 실험

막여과의 전처리 단계로서 약주내에 존재하는 고평가 물질들을 흡착시킬 수 있는 여과조제가 균체 총작력을 지니고 있는지 조사하기 위하여 길이 8 cm, 내경 2.5 cm의 celtte 칩에 비산균 약주를 통과시켰다. Celle로 처리된 약주는 25℃에서 일정기간 동안 저장하면서 저장기간 동안의 철산균수, 효모수, 총균수를 측정하여 여과조제의 균체흡착력과 이에 따른 약주의 저장성을 조사하였다.

약주의 품질측정

약주의 pH는 pH meter (model 520A, Orion)를 사용하여 측정하였고, 저장수도는 시료 10 mL를 취하여 지시약으로 phenolphthalein을 사용하여 0.1 N NaOH (F=1.002)로 적정하고 소비되는 NaOH 양으로부터 다음 식에 의하여 %컷산으로 저장수도를 계산하였다.

\[
\text{적정수도 (%컷산)} = \frac{\text{NaOH 소비량} \times \text{NaOH 양}}{\text{시료량}} \times 0.009
\]

막도는 분광광도계(1UV-1201, UV-Visible spectrophotometer, Shimadzu)을 사용하여 420 nm에서 흡광도로 측정하였다.

미생물검사

약주의 미생물을 표준평판법(44)에 의해 철산균, 철산균수, 효모수를 측정하였다. 약주시료를 면균한 증류수에 희석하여 세균과 철산균은 표준천정배치(Plate count agar, Difco Co.)와 Rogosa SL agar 배지(Difco Co.)에 각각 분주하여 37℃에서 72시간 배양하였고, 효모는 Malt extract agar 배지(Difco Co.)에 분주하여 25℃에서 72시간 배양한 후 결핵수 30-300개인 평판을 이용하여 결핵수를 측정하고 희석배지를 긁하여 미생물 생균수를 산출하였다.

결과 및 고찰

여과막의 선정과 맥여과 약주의 저장성 변화

약주의 저장성을 증진시키기 위해서는 약주의 냄새에 관련하는 약주내 미생물들을 사멸 또는 제거해야 한다. 약주의 미생물을 사멸 또는 제거시키기 위한 방법으로 가열살균 또는 저온살균 방법이 많이 사용되고 있지만 미생물의 완전제거가 어렵고 항생제성의 소실, 이중발생 등 관능적 품질을 떨어뜨리는 문제점을 지니고 있다. 따라서 약주의 관능적 품질을 유지시키고 변화미생물을 효과적으로 제거하기 위하여 본 연구에서는 맥여과에 의한 약주의 살균설사법을 실시하였다. 약주의 저장성을 증진시키기 위하여 비산균 약주를 재질과 세균의 크기에 서로 다른 5가지의 여과막
으로 여과하여 25℃에서 50일 동안 저장하면서 약주의 품질변화와 균체수를 측정하였다. 약주의 보존성 증진연구에 관한 전년도 실험결과에 의하면 비산균 약주의 온도별 저장성은 4, 37, 25℃ 순으로 감소하여 25℃에서 저장성이 가장 낮았기 때문에 본 연구에서는 저장성이 가장 낮은 조건인 25℃를 저장온도로 선택하였다. 저장중 미생물 수의 변화를 보면 Fig. 1에서 보는 바와 같이 대조군의 세균수와 척산균수는 초기 약 1.0 \times 10^7 CFU/mL에서 1.0 \times 10^8 CFU/mL 수준으로 증가하는 경향을 보였고 효모의 경우에도 초기 1.1 \times 10^6 CFU/mL에서 3.6 \times 10^7 CFU/mL 수준으로 증가하였다. 이러한 증가 경향은 척산균과 효모에서 비슷한 반면, 세균의 경우 약간의 차이를 보여 저장기간 중 초기 10일간은 모두 빠른 속도로 증가하였지만, 그 이후에는 척산균과 효모는 완만한 속도로, 세균은 지속적인 속도로 증가하였다. Fig. 1에 나타난 바와 같이 초기 10일간의 균체수의 증가가 전체 저장기간중의 반수 이상을 차지하는 것은 저장기간에 약주에는 굵의 성장요소가 많이 존재하고 있기 때문이라 추측된다. 또한 약주내에 존재하는 미생물은 척산균이 주종을 이루고 있음을 알 수 있었다. 반면에 모든 약과 약주는 여과의 세균과 세포의 크기로 관찰없이 저장기간 동안 세균, 척산균, 효모가 전혀 검출되지 않아 완벽한 세균을 지니고 있음을 알 수 있었고 보존성 또한 완전함을 알 수 있었다.

약과 동작의 여과속도는 Fig. 2에 나타난 바와 같이 0.45 μm PVDF가 4.24 mL/sec로 여과속도가 가장 빨랐고 그 다음으로 0.45 μm nitrocellulose였는데 경제적인 면을 고려할 때 0.45 μm nitrocellulose가 가장 적당한 여과막으로 판단되었다.

저장기간에 따른 약주의 pH는 Fig. 3에 나타난 바와 같이 대조군은 초기 4.15에서 50일 저장 후 2.66으로, 시험군은 저장 초기 4.20에서 50일 저장 후 2.64로 감소되어 대조군과 시험군 모두에서 비슷하게 약간 감소되는 경향을 나타내었다. 저장온도의 경우에는 25℃에서 50일간 측정한 결과 Fig. 4와 같이 대조군

![Fig. 1. Changes of viable cell number of total bacteria, lactic acid bacteria, and yeast in non-sterilized and filter-sterilized Yakju during the storage at 25℃. Membranes used in filter sterilization were 0.45 μm nitrocellulose, 0.22 μm nitrocellulose, 0.45 μm PVDF, 0.22 μm PVDF, 0.45 μm nylon. All membranes showed the sterilization effects.](image)

![Fig. 2. Comparison of flow rates in filter-sterilized Yakju during the membrane filtration. 1: Celite+0.45 μm Nitrocellulose, 2: 0.45 μm Nitrocellulose, 3: 0.22 μm Nitrocellulose, 4: 0.22 μm PVDF, 5: 0.45 μm PVDF, 6: 0.45 μm Nylon](image)

![Fig. 3. Changes of pH in non-sterilized and filter-sterilized Yakju during the storage at 25℃.](image)
약주의 Membrane Filtration

의 경우 초기 0.41%에서 저장기간에 따라 증가하는 경향을 보였으며 28일 경과 후에는 급속한 증가를 나타내어 50일 저장 후 0.60%으로 증가하였다. 반면 망

여과 약주의 경우에는 별다른 산도변화를 보이지 않았다. 높은 저장성을 나타내는데 이로부터 비살균 약

주는 저장기간중 약주내 미생물에 의해 산이 생성됨

을 알 수 있었다.

저장중 약주의 탁도(420 nm에서의 흡광도)는 Fig. 5와 같이 대조군의 경우 초기 0.13에서 0.72로 증

가한 반면 여과막을 사용하여 여과한 약주에서는 모

두 초기 0.07에서 0.15로 거의 증가하지 않음이 관찰

되었다. 특히, 비살균 약주는 초기 약 3주간의 저장 중

에 탁도가 빠른 속도로 증가하였으며, 약주의 백약의

형성은 용액으로도 관측이 가능하였다. 망여과 약주

의 경우 탁도의 변화가 적은 것은 약주내의 고분자 물

질과 변성미생물이 여과과정 중에 대부분 제거되었기

때문으로 판단되었다.

키토산의 제균력 실험

키토산은 키토산의 1단계제균물로서 낮은 용해성과

반응성 때문에 오랫동안 이 물질에 대한 연구나 이용

이 거의 이루어지지 않았으나 최근 이에 대한 물질과

각종 기능에 대한 연구가 행해진 결과 키토산 및 키토산

은 항균작용, 세균작용, 해양 의제작용, 플라스마를 저

화작용, 항중양활성, 멸균제작용 등 다양한 생성능

적 기능을 나타내는 것으로 알려지고 있다[18,19]. 이러한 생

리적 작용을 나타내는 키토산을 약주에 첨가하여 기

능성 및 저장성을 항상시키기 위한 목적으로 비살균

약주에 키토산을 각각 0.1, 0.01, 0.001% 첨가하여

25℃에서 50여일간 저장한 후 약주의 품질을 측정한

결과 Fig. 6, Fig. 7과 Fig. 8에서 보는 바와 같이 세균

수와 적산균수, 효모수는 키토산을 0.1% 첨가하였을 경

우에 대조군이나 다른 키토산 농도의 시험군보다 미생

물의 수가 현저히 감소하여 키토산이 항균효과가 있

음을 입증되었다. Fig. 6에서와 같이 키토산의 첨가농

도가 증가할수록 저장기간 동안의 세균수의 증가속도

가 감소되었으며 키토산의 첨가량이 높을수록 항균효과

가 큰 것으로 나타났다. 한편 키토산 항균요법이 0.001% 류

인 약주의 경우에 예상외로 키토산을 첨가하지 않은

약주보다 세균의 증식이 높은 것으로 나타났는데 이

Fig. 4. Changes of titratable acidity in non-sterilized and filter-sterilized Yakju during the storage at 25℃.

Fig. 5. Changes of turbidity in non-sterilized and filter-sterilized Yakju during the storage at 25℃.

Fig. 6. Changes of viable cell number of total bacteria in Yakju supplemented with chitosan at various concentrations during the storage at 25℃.
Fig. 7. Changes of viable cell number of lactic acid bacteria in Yakju supplemented with chitosan at various concentrations during the storage at 25°C.

Fig. 8. Changes of viable cell number of yeast in Yakju supplemented with chitosan at various concentrations during the storage at 25°C.

Fig. 9. Changes of pH in non-sterilized and chitosan-added Yakju during the storage at 25°C. Chitosan was added to the non-sterilized Yakju with various concentrations as indicated.

Fig. 10. Changes of titratable acidity in non-sterilized and chitosan-added Yakju during the storage at 25°C. Chitosan was added to the non-sterilized Yakju with various concentrations as indicated.

는 미량의 키토산이 세균의 사멸작용보다는 중식인자로 작용했기 때문으로 생각된다. Fig. 7과 Fig. 8의 첫 산균이나 효모의 경우에도 마찬가지로 키토산의 첨가량이 증가함수록 항균효과가 커짐을 나타내었다. 특히 키도산의 첨가량이 고농도일수록 초기 10일간의 항균효과가 현저함을 알 수 있었다.

Fig. 9와 Fig. 10에서의 값은 pH와 적정산도는 키도산 첨가한 실험군의 첨가하지 않은 대조군보다 비슷한 양상을 보여 키도산의 첨가여부가 pH와 적정산도의 변화에는 별다른 영향을 주지 않음을 관찰되었다. 이는 키도산의 첨가가 약주미생물의 증식억제에 어느정도 효과가 있지만 약주내 산생성을 역제할 정도로 미생물이 사멸되지 않은을 알 수 있었다.

저상중 약주의 투도(420 nm에서의 흡광도)는 Fig.

11에서 보는 바와 같이 키도산을 0.1% 첨가한 실험군는 저장초기 1.312에서 50일 저장후 1.691로 투도가 다른 대조군과 실험군에 비해 매우 높음을 알 수 있었는데 0.1%의 키도산 첨가가 실험에는 어느 정도 효과가 있지만 투도가 매우 높아 관광적인 면에서 좋지 않은을 알 수 있었다. 대조군의 경우 키도산을 첨가한 실험군보다 저장기간 초기에 투도가 높았으나 저장기간 간중의 지속적인 균수의 증가로 투도의 증가폭이 키도산 함유 약주보다 커짐을 관찰할 수 있었다.
여과보조제에 의한 균체의 훌라력을 실험과 약주의 품질 변화
여과보조제인 celite를 유리관(8 × 2.5 cm)에 충전하여 약주를 동파시간 뒤 25℃에서 50일 동안 저장한 뒤 균체흡착력을 조사한 결과 세균, 척산균, 효모의 생균수가 비슷한 약주와 비슷한 양상을 나타내었고, pH, 적정산도, 탄도 또한 비슷한 경향을 보여 여과보조제로 사용한 celite는 균체흡착력을 지니고 있지 않음을 알 수 있었다(data not shown).

요 약
막여과 약주의 저장 중 품질변화를 관찰하기 위하여 여러 가지 종류의 여과막으로 여과한 약주를 25℃에서 50일간 저장하면서 약주의 pH, 적정산도, 탄도 및 총균수, 척산균수, 효모수를 측정하였다. 비슷한 약주는 저장 중 적정산도, 탄도, 생균수가 증가한 반면 pH는 감소하였으나. 막여과 약주의 적정산도와 탄도의 변화가 관찰되지 않았으며 약주내 미생물들이 관찰되지 않아 높은 저장성을 보여주었다. 키토산을 0.1% (w/v) 첨가하였을 경우에는 생균수의 급격한 감소현상을 나타내어 높은 살균력을 지니고 있음을 알 수 있었다.

감사의 글
본 연구는 과학기술처에서 시행한 선도기술개발사업의 지원으로 수행된 연구결과의 일부로서 이에 감사드립니다.

문헌
1. 김찬호, 김교창, 김도영, 오만철, 이석진, 이수오, 장순택, 정지훈: 발효공학 산전문화사, 서울, p. 80-103 (1990)
8. 전기선: 무배에 미치는 방약작주의 저장법. 특허공보 제237호 (1972)
12. 전우진, 이영호, 김재현, 김태현, 해오기방사선의 생리기능성. 한국가천원자로연구회, 1, 4-10 (1996)
15. 민용규: 전통주의 품질향상 및 산업화 기술 연구. 제 14차년도 중간보고서, 과학기술처 (1996)