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ABSTRACT

We have made semi-analytical studies to investigate the configurations of caustics and the probability
distribution of the flux factor K for the binary microlensing including external shears. A parametric
equation of critical curve is derived in a 4th order complex polynomial. We present the topological
dependencies of the caustics for selected gamma parameters (0, 0.3, 0.6, 1.3, 2.0, and 2.5) and convergence
terms (0., 0.4, 0.8, 1.2, 1.6, and 2.0). For the purpose of analyzing the efficiency of High Amplification
Event (HAE) on each caustics, we examine the probability distribution of the flux factor by a Monte
Carlo method. Changing the separation of the binary system from 0.8 to 1.3 (in normalied unit), we
examine the probability distribution of the K-values in various gamma parameters. The relationship
between gamma parameters, seperations and their probabilties of the flux factor K have been studied.
Our results show that the relatively higher K values (K>1.5) are increased as increasing the separation
of the binary system. We therfore conclude that, in the N-body microlensing, the probabilities of higher
HAEs are inversely proportional to the star density as well. We also point out that the present research
might be used as a preliminary step toward investigating heavy N-body microlensing simulations.
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I. INTRODUCTION

Gravitational microlensing is the lensing effects of the stars in a macro-lensing galaxy, which was first predicted
by Chang and Refsdal (1979, 1984). It was named as microlensing by Paczynski (1986) because microlensing splits a
macro-image into several sub-images on scales of micro arcseconds. Recentlly many astronomers have paid attention
to the microlensing effect to use it as a searching tool for the dark matter in the Galaxy and extra-galaxies.

For the theoretical study of binary lensing, there were works only with various restrictions, such as no external
shears and an identical mass ratio (Schneider and Weiss, 1986). So their general lensing behaviors depending on
those parameters remain unclear. Since almost all stars are in binary or multiple systems, studies on the binary
microlensing could be used for astronomical tools such as extra-planetary system searching, as pointed out by Mao
and Paczynski(1991). Therefore we study binary microlensing with all possible free parameters, which could be
applied to any situation including internal Galactic lensing or extra-galactic lensing.

Binary microlensing also have been detected by several dark matter observing groups (i.e. MACHO(Alcock et
al., 1993), OGLE(Udalski et al., 1992 ), EROS(Aubourg et al., 1993), DUO(Alard, 1995). Up to now about 200
microlensing events have been observed, and the fraction of binary events is estimated about just above 10% in
the total microlensing events (Paczyski, 1995). We have investigated the binary microlensing including all possible
parameters (i.e. external shear, continuous matter and an arbitrary mass ratio), so our results could be applied to
the Galactic microlensing and extra-galactic microlensing as well. We derive an anarytical expression of the critical
curve. In this paper, we present some topologies of the critical curves and the caustics with various lens parameters.
To understand the features of H AE's of binary microlens, we calculate the probability distribution of the flux factor
K with a Monte carlo method.
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II. THEORY OF MICROLENSING

The lens equation describes the mapping of the photon trajectories from the lens plane to the observer plane,
which can be repesented by a conventional nomalized lens equation(Chang and Refsdal, 1979; Schneider et al. 1992),
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where ¢ (£,7) and = (z,y) are the two dimensional vectors of a light ray in the lens and the observer plane,
respectively. k. is the continuous mass density of interstellar matter and/or dark matter in the unit of the critical
surface density. v is the external shear term induced by the mass distribution of a macrolens, which causes the
astigmatic property, and m; is the mass of the :th microlens in unit of an arbitrary reference mass {e.g. Mg). The
critical surface density of which focal point locates on an observer plane is(Young, 1981; Paczynski, 1986),
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On the each plane, all length scales are normalized by following values:

D,
(=)ro : source — plane,

Dq
7o : deflector — plane, (3)
D,
(E:)Tg : observer — plane.
The Einstein radius, r,, is given by Refsdal(1964),

AGM
ro =1/ —z Dess (4)

where M is the mass of a lens, and other symbols have their usual meaning. ry represents the Einstein radius
of a arbitrary mass, r, is also used as a reference scaling factor. D.sy is called effective distance that contains all
cosmological parameters in the lens equation, which 1s,

Desy = —5—, (5)

where D, and Dy are angular diameter distances from the observer to the source and the lens, and Dy,is the distance
between the lens and the source.

IIT. CRITICAL CURVES AND CAUSTICS

Critical curves are defined by closed curves where Jacobian of the lens equation are vanished (Bourussa and
Kantowski, 1975; Chang, 1979) in the lens plane, and the caustics are the mapping of the critical curves to the
observer plane. That is,

_ 0=y, _
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The Jacobian of the lens equation is directly related to the amplification event of a light bundle. The amplification is
inversely proportional to the determinant of Jacobian matrix. Whenever a source crosses the critical line, the number
of images changes by 2, which is always hold. Since this effect relates with the appearing or disappearing of images,
it would have an important role in gravitational lens theory, so called High Amplification Events (hereafter, HAEs),
especially in the microlensing. For mathematical convenience, we use complex notations to derive a parametric
equation of critical curve, but it is not indispensable. We derive the parametric critical curve equation including
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all free parameters (external shear, arbitrary mass ratio and positions of the masses). The complex polynomial of
degree 4 in re'? is,

Foin(X) =[(1 - Kc)e—ie + 9] x 4
— (1 ke)e™ 4 4](Xs + Xa) x X
+ (1= ke’ +v(XE + X3) +my +my] x X2, -
+ [=2(m1 Xy + mp X1)] x X
+(XIX3 +miX3 + myX7)

where X; and X, are the positions of mass components, m; and ms are the normalized masses of microlenses.
Above parametric equation can be readily solved by a simple numerical solver. Solving this equation, we set the
optical axis to get though the primary component of the binary system(i.e. X; = 0.0)
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Fig. 1. The structures of the critical curves (a) and the corresponding caustics (b) for various 7 -parameter (0.0, 0.3, 0.6, 1.3, 2.0,
and 2.5). In Fig. (1-a) and (1-b), two ghost critical curves and ghost caustics are shown. When a gamma parameter is larger than 1 and

2, the critical curves are divided into two parts and four parts, respectively(see Fig. 5 and 6).
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Fig. 2. The morphological variation of the critical curves and caustics for K, values (with fixed values of ¥=0.3, d(separation)=1.0.
Fig. 2 shows 2 ghost critical curves. Fig. 5 and 6 show the overfocusing cases. Note: In these figures, the critical curves in the lens plane

and the caustics in the observer plane are overlapped. Bold line represents the critical curves, and thin line represents the caustics.
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Fig. 3. The effect of mass ratio to the critical curve structures. Fig. 1,2,3-(a) show the case for an identical mass ratio(1:1}, and Fig.
1,2,3-(b) show a different mass ratio(1:0.5). Two mass components are located at the points(0.0,0.0) and (1.0,0.0) on the normalized

coordinates, respectively
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IV. PROBABILITY DISTRIBUTION OF THE K-VALUE

The flux factor-K is the most important parameter describing the strength of an amplification event by mi-
crolensing, so statistical study of the K-value for a given caustic curve may help us to get an insight for each lens
parameter. The concept of the factor K was firstly introduced by Chang(1979,1984), which was simplified later more
adequately by some authors (Kayser and Witt 1989). Since the Jacobian of a lens equation vanishes on the critical
line within the approximation of geometrical optics, this factor is of importance to analyze the lightcurve induced
by the microlensing effects. The flux factor K proposed by Kayser and Witt(1989) is given by,

S
K= Tl (8)

which is independent of any cosmological parameter, due to the absence of the terms including distance relation.
where the tangential vector of a caustic curve, Tj,

—alJj|
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which is valid on the all caustic lines, except for the cusps. On the relation of maximum amplification given in
eq. (10), the K value, the form factor and R, (the source size in normalized unit) represent the flux variation by
appearing of two additional images during the HAEs (Chang, 1981). The form factor, f, is determined by a source
brightness profile, for a uniform surface brightness of a source, f=1.39 and for the case of a limb darkening, f=1.47
(Kayser & Witt, 1986). Therefore, the total magnitude variation during a HAE should satisfy the relation given by,

Amgap < 2.5log(1 + %), (10)
which describes the maximum bitghtness variation in magnitude that can be occurred when a HAE happen with
the crossing of a source whoes size is much smaller than one Einstein radius on the caustic line. If a certain HAE is
detected with photometric observations, we may use an useful confining relation to determine the radius of a source.
Using above relation, we have an equation confining the source size;

Kf

2
R, < (10(0.4mHAE) — 1) ’ (11)

If we know the K-value of a given lensing event and its maximum magnitude as well, we will be able to determine
the maximum source size by eq. (11) with observed light curves. We investigated the probability distribution of K
values on the caustics with a Monte Carlo simulation. To generate uniform deviated random numbers through 0
to 27, we use the RAN1 routine (Press et al. 1992) that has sufficiently long period(~ 2%'). With the parametric
equation of critical curves given in eq. (7), we obtained the probability distribution of normalized K values on a
caustic curve. We compute the probability distribution of the K-value with a Monte Carlo calculation.

dP 1 én;
dAK ~ N SAK’ (12)

where P is the probability of each event, n; is the number of each event and AK is the bin size of the K values(=
0.2K). We used total 40,000 points on each caustic line, and the statistical error is set to the 90% confidence level
(i.e. 1.6470)

V. CONCLUSION

We have investigated structures of the critical curve and the amplificaton properties due to binary microlens
systems. For the case of the system consisting of equal masses without external shear, the critical curves of the
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Fig. 4. Probability distributions of the K value for various ¥ parameters.

Fig. a-(1,2,3) and Fig. b-(1,2,3) show for the case of ¥=0.0, and ¥=0.3 respectively with a separation parameters(d=0.8, 1.1 and

1.3).
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Fig. 5. Probability distributions of the K value for ¥ parameters.

Fig. a-(1,2,3) and b-(1,2,3) show for the case of Y=-0.5 and y=1.2 respectively with a separation parameters(d=0.8, 1.1 and 1.3).
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binary systems of which separation is simaller than one Einstein radius are no longer Cassini oval(see Fig.1(1-a)).
Ghost critical curves are then formed. With a positive external shear, the separation parameter should be less
than that of no shear cases in order to form the ghost critical curves. The external shears have made much more
complexities for the caustic curves such as self-intersecting points disscussed by Schneider et al.(1992). Even though
the critical curve is a single closed shape, its corresponding caustics can have very complicated structures (i.e.
butterfly and swallowtail structures). We found that, especially for the cases of ¥ < 0.0, the arbitrary mass ratios
are strongly responsible for the complexities of the caustics(see Fig. 3, 2-(a,b)). Whereas v = 0, there is usually
no self-intersection points (see Fig. 3,1-(a,b)), except for the cases of overfocusing and a different mass ratio with a
very closed separation(< 1.0).

Table. 1. Configurations of the critical curves and the caustics.

lens tvpe Chang-Refsdal lens Binary micro lens
cases
Number of critical regions 1T Uy 1 or 3 (2 ghost) (J 7<)
2 (yi>1) 2or4 y >
Number of caustic regions i for over focusing cases *for special ¥ cases;
(lx,=+4>1.0). from 1 up to 21
from 1 to 5 ( including self-intersection regions )

For various values of gamma parameter, the evolution of the probability distribution of the K factor has been
calculated, as varying the separation between two components from 0.8 to 1.3(in normalized units). The histograms
of probability distribution of the flux factor K (hereafter P;) are presented in Figs. 5 and 6. We have calculated
them varying two parameters, the 7 -parameter and the separation of the binary system. We have read the following
tendency from the Pp. We have found that the greater the separation of the system, the higher the value of the
flux factor with |y| < 1.0.With v < 1.0, the highest value of K could reach up to 5 or even heigher value, but their
probability of K > 3.0, are very rare, which is in the order of 10=* down to 10~%. We thus conclude that such a
high and rare values of K may not be responsible for the high amplification events (HAEs) due to the convolution
effect with a source profile (Grieger et al, 1984). In the view of the relation of optical depth, our results are well
agreed with that of Witt(1990). '

In the cases of |y| > 1.0, the all K values are of relatively smaller value(< 1.5) as compared with the case of
7] < 1.0. Contrary to |y| < 1.0, the separation of the binary system would not influence to the flux factor K.
From these results of the present studies, we also are dare to predict that there will be no significant differences of
HAEs in the N-body microlensing, whether external shearing effects are taken into account or not(see Witt, 1990).
With }y| < 1.0 the separation of microlens may take a great extent role to decrease or/and increase the value of
the flux factor K for n-body microlensing. It is important to mention, however, that |y| > 1.0, the optical depth
of the n-body lensing system would not influence to the variation of the K values. Our results show that the most
dominant factor for changing the K value in the microlensing seems to be the mean separation of the micro-lenses.
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