정신분열증환자와 도파민 D₁ 수용체 대립유전자 연합

김정일* · 이민수*[†] · 곽동일*

Association between the Alleles of the Dopamine D₁ Receptor and Schizophrenia

Jeong II Kim, M.D.,* Min Soo Lee, M.D.,* † Dong II Kwak*

ABSTRACT

• he results regarding an association between the polymorphism sites in the dopamine D1 receptor gene and schizophrenia compelled us to study the distribution of the polymorphism in Korean schizophrenia and controls. Eighty-eight schizophrenic patients and normal controls were examined by case-control study for distribution of the polymorphism of the dopamine D₁ receptor gene in Korean population to minimize the effect of racial differencies in gene frequencies.

The frequencies of the B₁ and B₂ in schizophrenic patients were 0.11 and 9.89, respectively. And 0.10 and 0.90 in normal control. Ther was no significant differences in the frequencies in the allele B₁ and B₂ between schizophrenic patients and normal controls.

The author present here the evidence of a lack of alleic association between the polymorphism of the dopamine D₁ receptor gene and Korean schizophrenic patients. The assumption that the dopamine D₁ receptor gene has a genetic role in the development of schizophrenia was not suppoorted by this case-control study.

KEY WORDS: Schizophrenia · Dopamine D₁ receptor · Alleic association.

가 서 론 가 가 (ge nome) (phenotype) (linkage) 가 (polygenic 가 가 가 multiple threshold theory) (Fara -Tsaung 1985), one (O'Rourke 1982), (Tsaung 1982) (penetrance)가 (Ba-가 가 가 ron 1986), Department of Neuropsychiatry, Korea University College of Medicine, Seoul, Korea (Amos 1991; Gelshon Goldin 1987). , 136 - 705 5가 126 - 1) (02) 920 - 5354,) (02) 923 - 3507

```
가
                                                                                                          가
                                                          uency)
                                                                         (prevalence)
            (allelic association)
                                 가 가
                                                                                                     dopamine D<sub>1</sub>
                                                          receptor가
              가
                                  가
                                                     가
                                                                           연구 대상 및 방법
                                                            1. 연구대상
                                                            1) 대상환자군
                 (candidate gene)
                                                            1992 3
                                                                           1996 2
                                                가 가
                                 가
                                                                                                               가
                                           (Gerschon
                                                                   DSM - III - R(APA 1987)
1994). 5가
                                   가 가
                                                          20
                                         가 가
                    5가
                                                                                   가 54 , 가 34
                                 가
                                                             1.58:1
                                                                                       35.8 \pm 7.9
                                                                                                        (Table 1).
                                        (Coon 1993;
                                                            2) 정상대조군
Jensen 1993; Gejman 1994; Jonsson 1993; Mac-
ciardi 1994; Moises 1991; Nanko 1993; Sabate
1994; Seeman 1993; Shaikh 1994; Su 1993).
                            (polymerase chain reaction;
                      가
PCR)
                                           D<sub>2</sub>, D<sub>3</sub>, D<sub>4</sub>
                                            1994;
  1995;
                  1995)가
                                                                                                             가 54
                                                                                            88
                                                  D_2(
                                                                 가 34
                                                                                     1.58:1
                                                                                                               36.
       1995)
                    D<sub>3</sub>(
                                 1995),
                                              D₄(
                                                          0 \pm 7.7
                                                                                                             가
  1995)
                                                              (Table 1).
        D_2
                                                   D_1
                                                            2. 연구방법
                       (Seeman 1989),
                              (high and low)
D_1
               (affinity)
                                                                            (candidate gene)
            가
                                                                                            가
                                                                                                           가 가
     (Mamelak 1993).
                               D_2
                                                            1) DNA의 정제
                                              D_1
                                                                    1.5ml
                                                                            13,000rpm
                                              D_1
                                                                            ACE shocking
                                                                                           (NH<sub>4</sub>Cl 8g, Na<sub>2</sub> ED -
                                                                    pellet
                                      1996 ; Kaplan
                              (Ames
1994).
                                                            Table 1. Demographic data
                                                             Diagnosis
                                                                                           Sex
                                                                                                    Mean age±SD
                                                D_1
                                                           Schizophrenics
                                                                                        54 M, 34 F
                                                                                                       35.8±7.9
                                                           Control
                                                                              88
                                                                                        54 M, 34 F
                                                                                                       36.0±7.7
              (allele)
                               (genotype)
                                                (freq -
```

TAH ₂ O 1g, KH ₂ PO	O₄ 0.1g	1L) 500 μ	l 3) 증폭된 생성물의 분석				
3		. 2	207bp (Dd	lel)			
			146bp+61bp B ₁ , 146bp+42	bp+19bp			
	ре	ellet 400 µI nucleic ly -	$B2 . B_1 \qquad B_2$				
sis buffer[Tris(pl	18.0) 10mM, Na	aCI 400mM, EDTA 2mM	Ddel	10% PA -			
pellet		10% SDS 27µl pr-	GE gel ethidium bromide				
oteinase K 10 µ l	가 56	2	(ultraviolet transilluminator)	, pol -			
•	ed) NaCl 135 µ l	15	aroid (polaroid film 667) .				
. 13,000rpm	,		3) 통계분석방법				
2		DNA	ਹ ਤੁਸਟਿਸ਼ਰਬ (Chi - square)				
. DN	IA 70%	,	2 x 2 (contingency table)	(continuity			
100 µ l			correction) .	(continuity			
	H반응(polymeras IJ D₁ 수용체 유건	se chain reaction : PCR)을 전자좌의 분석					
D_1	Cich	on (1994)					
			p<.05 .				
(p	orimer) Cichor	n (1994)	(prevalence) (free	quency)			
			Comings (1991)	•			
5' - ACTGACCO	CTATTCCCT	GCT - 3'	어그경되				
5' - AGCACAG	ACCAGCGTGT	TC - 3'	연 구 결 과				
	25 μ1	35					
			가 (Table 1).				
template DNA		50ng	가 (Table 1). Table 2 (Table 2).	D_1			
template DNA primer		50ng 25pmol	Table 2 (Table 2).	D ₁ B ₁ B ₂ , B ₂ B ₂ 3			
·		-	Table 2 (Table 2).				
primer		25pmol	Table 2 (Table 2). PCR B ₁ B ₁ , I	B_1B_2 , B_2B_2 3			
primer MgCl ₂		25pmol 1.5mM	Table 2 (Table 2). PCR B_1B_1 , B_2 가 DNA .	B_1B_2 , B_2B_2 3 88			
primer MgCl ₂ tris - CI(pH8.3		25pmol 1.5mM 10mM	Table 2 (Table 2). PCR B_1B_1 , B_2B_2 72 B_1B_1 , B_2B_2 72	B ₁ B ₂ , B ₂ B ₂ 3 88 85.2%,			
primer MgCl ₂ tris - CI(pH8.3 KCI		25pmol 1.5mM 10mM 50mM	Table 2 (Table 2). PCR B_1B_1 , E_1B_2 B_1B_2 B_2B_2 B_2 B_1B_2 B_2	8 ₁ B ₂ , B ₂ B ₂ 3 88 85.2%, 88			
primer MgCl ₂ tris - CI(pH8.3 KCI gelatin	3)	25pmol 1.5mM 10mM 50mM 0.1%(w/v)	Table 2 (Table 2). PCR B_1B_1 , B_2 7 DNA . B_1B_1 3 , B_1B_2 13 , B_2B_2 72 14.8% , B_1B_1 1 , B_1B_2 15 , B_2B_2 72	8 ₁ B ₂ , B ₂ B ₂ 3 88 85.2%, 88 83.0%,			
primer MgCl ₂ tris - Cl(pH8.3 KCl gelatin dNTP	3)	25pmol 1.5mM 10mM 50mM 0.1%(w/v) 20 µ M 1U	Table 2 (Table 2). PCR B_1B_1 , B_2B_2 , B_1B_2 , B_2B_2 , B_2B_2 , B_2B_2 , B_1B_1 , B_1B_2 , B_1B_2 , B_2B_2 , B_2B_2 , B_1B_2 , B_1B_2 , B_1B_2 , B_2B_2 ,	8 ₁ B ₂ , B ₂ B ₂ 3 88 85.2%, 88 83.0%,			
primer MgCl ₂ tris - Cl(pH8.3 KCl gelatin dNTP	se	25pmol 1.5mM 10mM 50mM 0.1%(w/v) 20 μ M 1U	Table 2 (Table 2). PCR B_1B_1 , B_2 7 DNA B_1B_1 3 , B_1B_2 13 , B_2B_2 72 14.8% , B_1B_1 1 , B_1B_2 15 , B_2B_2 72 17.0% . B_2 18.2%, 96.6% 18.2% 98.9% . B_1 B_2 0.11 0.89,	8 ₁ B ₂ , B ₂ B ₂ 3 88 85.2%, 88 83.0%,			
primer MgCl ₂ tris - Cl(pH8.3 KCl gelatin dNTP Taq polymera	se 94 5	25pmol 1.5mM 10mM 50mM 0.1%(w/v) 20 \(\mu \) M 1U 25 \(\mu \) I 94	Table 2 (Table 2). PCR B_1B_1 , B_2B_2 , B_1B_2 , B_2B_2 , B_2B_2 , B_2B_2 , B_1B_1 , B_1B_2 , B_1B_2 , B_2B_2 , B_2B_2 , B_1B_2 , B_1B_2 , B_1B_2 , B_2B_2 ,	8 ₁ B ₂ , B ₂ B ₂ 3 88 85.2%, 88 83.0%,			
primer MgCl ₂ tris - Cl(pH8.3 KCl gelatin dNTP	se	25pmol 1.5mM 10mM 50mM 0.1%(w/v) 20 μ M 1U	Table 2 (Table 2). PCR B_1B_1 , B_2 7 DNA B_1B_1 3 , B_1B_2 13 , B_2B_2 72 14.8% , B_1B_1 1 , B_1B_2 15 , B_2B_2 72 17.0% . B_2 18.2%, 96.6% 18.2% 98.9% . B_1 B_2 0.11 0.89,	8 ₁ B ₂ , B ₂ B ₂ 3 88 85.2%, 88 83.0%,			

 Table 2. Genotype and allele frequencies of dopamine D1 receptor in schizophrenic patients and contols

Group	No	DRD_1		Allele		Frequency of allele		
	NO .	B ₁ B ₁	B ₁ B ₂	B ₂ B ₂	В1	B ₂ (%)	B ₁ B ₂	B_2
SPR	88	3	13	72	16(18.2)	85(96.6)	0.11	0.89
Controls	88	1	15	72	16(18.2)	87(98.9)	0.10	0.90

=1.14 df=2 non-significance SPR: Schizophrenics

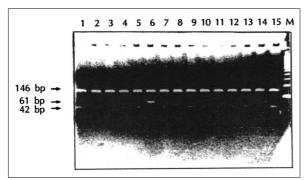


Fig. 1. PCR analysis of Dde I Restriction fragment length polymorphisms in Dopamine D₁ receptor alleles for schizophrenic patients

No. 1: B_2B_2 homozygote. 2: B_2B_2 homozygote. 3: B_1B_2 heterozygote. 4: B_2B_2 homozygote. 5: B_2B_2 homozygote. 6: B_1B_1 homozygote. 7: B_2B_2 homozygote. 8: B_1B_2 heterozygote. 9: B_2B_2 homozygote. 10: B_2B_2 homozygote. 11: B_2B_2 homozygote. 12: B_2B_2 homozygote. 13: B_2B_2 homozygote. 14: B_2B_2 homozygote. 15: B_2B_2 homozygote. M: 100bp DNA size marker. PCR products were run on a 5% PAGE/0.5X TBE gel.

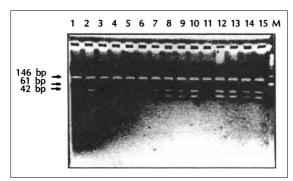


Fig. 2. PCR analysis of Dde I Restriction fragment length polymorphisms in dopamine D₁ receptor alleles for normal controls. No. 1: B₂B₂ homozygote. 2: B₂B₂ homozygote. 3: B₂B₂ homozygote. 4: B₁B₂ heterozygote. 5: B₂B₂ homozygote. 6: B₁B₂ heterozygote. 7: B₂B₂ homozygote. 8: B₂B₂ homozygote. 9: B₂B₂ homozygote. 10: B₂B₂ homozygote. 11: B₂B₂ homozygote. 12: B₂B₂ homozygote. 13: B₂B₂ homozygote. 14: B₂B₂ homozygote. 15: B₂B₂ homozygote. M: 100bp DNA size marker. PCR products were run on a 5% PAGE/0.5X TBE gel.

챀 고 DNA (1994),(1995),(1995),(1995)가 가 3 , 5 , 11 , 18 , 19 , X 가 가 가 가 5 가 가 가 5 5 Basset (1988)

(trisomy)

가 . Sh -(translocation) errington (1988) (autosomaldominant) 가 5q11 - 13 (restriction fragm ent length polymorphism; RFLP) (Kennedy (Detera - Wadleigh 1989), (St Clair 1989), 1989), (Diehl 1989), (McGuffin 1990) 가 Sherrington (1993) (microsatellite marker) 5 (microsatellite polymorphism) (1993)(1995)3가 D5S39, D5S76 5 Dearry (1992), Sunahara (1990), Zhou (1990) 가 D_1 5 (5q35.1)(Grandy 1990; Liti 1991) 5 5가 D_1 D_2 가 (Grandy 1990). D_1 가 , adenylate cycl - D_2 가 가 (Tsaung 1982), (Baron 1986), (Amos 1991; Gelson Goldin 1987) 가 (Davis 1991) 가 가

Macciadi 1991; Sobell

 D_1

1993).

(Smeraldi

가 B_1 В B_2 5 B_2 가 D_1 가 (Coon 1993; Jensen 1993; Liu 1995). Kaufman (Javitch 1991; Seeman 1993). 가 ga mma aminobutyric acid 가 곀 론 D_1 88 88 D_1 B₁ B_2 0.11 0.89, 0.10 0.90 D_1 가 가 가 가 가 D_1 가 D_1 D_1 가 D_1 중심 단어: 참고문헌 오강섭 · 김영태 · 이민수(1994) : 한국인 정신분열증 가계의 염

 B_1

, B₂

B₁B₁

 B_1B_2

 B_2

Coming

 B_2B_2

B₁

(1991)

 B_1B_2

색체 5번 D5S39(p105-153Ra), D5S76(p105-599Ha) 및 도파민 D_2 , D_3 수용체 유전자좌 간의 연관관계연구. 생물정신의학 1:67-78

이민수(1995): 분자유전학을 통한 정신분열증의 이해. 대한생 물정신의학회 대한정신약물학회 합동 95 추계학술대회초록 집, 서울, 대한생물정신의학회

이민수·김지연·이승환(1995): 정신분열증과 도파민 D_4 수용체 유전자 Variant의 연관성. 대한신경정신의학회 제38차 추계학술대회초록집, 서울 대한신경정신의학회

이민수·오강섭·신준호·김영태(1995): 한국인 정신분열증 3 가계와 염색체 3번(DRD3), 5번(D5S39; D5S76) 및 11번 (DRD2; DRD4) 유전자좌 간의 연관관계 연구. 대한신경정 신의학회 제38차 추계학술대회초록집, 서울, 대한신경정신 의학회

이민수·이소영·김영태·서광윤·곽동일(1993): PCR과 RFLP를 이용한 한국인 정신분열증환자 염색체 5번 q11.2-q13.3 간의 linkage에 관한 연구. 대한신경정신의학회 제36차 추계학술대회초록집, 서울, 대한신경정신의학회

이홍석·이민수·서광윤(1995) : 한국인 정신분열증 환자의 도 파민 D_2 수용체 유전자의 $Taq\ I$ 다형성 분포에 관한 연구. 신경정신의학 34:1641-1651

한문균·이민수·이대희(1995): 한국인 정신분열증 환자와 도 파민 D₃ 수용체 유전자의 연합

American Psychiatric Association (1987): Diagnostic and Statistical manual of Mental Disorders. 3rd ed, Revised, Washington DC, American Psychiatric Association

Ames D, Marder SR, Wirshung WC (1996): Risperidone: Clinical Applications. In: The New Pharmacotherapy of Schizphrenia. Ed by Breier A, Washington DC, Clinical Practice, pp15-40

Amos CI, Martinez M, Bale SJ(1991): Can a susceptibility locus for schizophrenia be excluded from chromosome 5q11-13? Am J Hum Genet 48: 1206-1208

Baron M(1986): Genetics of schizophrenia: Familiar patterns and mode of inheritance. Biol Psychiatry 21: 1051-1066

Basset AS, McGillivray BC, Jones BD, Pantzar JT (1988): Partial trisomy chromosome 5 cosegreating with schizophrenia. Lancet I: 799-800

Cichon S, Nothen MM, Erdmann J, Propping P (1994): Detection of four polymorphic sites in the human dopamine d1 receptor gene (DRD1). Hum Mol Genet 3: 209

Comings DE, Comings BG, Muhleman D(1991): The dopamine D₂ receptor locus as a modifying gene in neuropsychiatric disorders. JAMA 266: 1793-1800

Coon H, Byerley W, Holik J, Hoff M, Myles-Worsley M, Lamfelt L, Sokoff P, Schwartz J-C, Waldo M, Freedman R, Plaetke R (1993): Linkage analysis of schizophrenia with five dopamine receptor gene innine pedigree. Am J Hum Genet 52: 327-334

Davis KL, Kahm RS, Ko G, Davidson M (1991): Dopamine in schizophrenia: a review and reconceptualization. Am J Psychiatry 148: 1478-1486

Dearry A, Gingrich JA, Falardeau P, Fremeau RT Jr, Bates MD, Caron MG(1990): Molecular cloning and expression of the gene for a humnan D₁ dopamine receptor. Nature 347: 72-76

Detera-Wadleigh SD, Goldin IR, Sherrington R (1989) : Exclusion

- of linkage to 5q11-13 in families with schizophrenia and other psychitric disorders. Nature 339: 391-393
- Diehl SR, Kendler KS (1989): Strategies for linkage studies of schizophrenia: pedigree, DNA markers and statistical analyses. Schizophr Bull 15: 403-419
- Faraone SV, Tsaung MT (1985) : Quantitative models of the genetic transmission of schizophrenia. Psychol Bull 98: 41-66
- Gejman PV, Ram A, Gelenter J, Friedman E, Cao Q, Pickar D, Blum K, Noble EP, Kranzler HR, O'Malley S, Hamer DH, Whitsitt F, Rao P, DeLisi LE, Virkkunen M, Linnolia M, Goldman D, Gershon ES (1994): No structural mutation in the dopamine D₂ receptor gene in alcoholism or schizophrenia. JA-MA 271: 204-208
- **Gelshon ES, Goldin ER (1987)**: The outlook for linkage research in psychiatric disorders. J Psychiatr Res 21: 541-550
- Gelshon ES, Goldin LR, Martinez MM, Hoehe MR (1994): Detecting discrete genes for susceptibility to bipolar disorder or schizophrenia. In: Genetic Approaches to mental Disorders. Ed by Gershon ES, Cloninger CR, Washington DC, American Psychiatric Press
- Grandy DK, Zhou QY, Alllen L, Litt R, Magenis E, Civelli O, Litt M(1990): The human D₁ dopamine receptor gene is located on chromosome 5 at 135.1 and identifies an EcoRI RFLP. Am J Hum Genet 47: 828-834
- **Javitch JA, Kaufmann CA (1991)**: Schizophrenia and the dopamine D_2 receptor. In: Review of Psychiatry, Vol 10, Ed by Tasman A, Goldfinger SM, Washington DC, American Psychiatric Press, pp 434-479
- Jensen S, Plaetke R, Holik J, Hoff M, Myles WM, Leppert M, Coon H, Vest K, Freedman R, Waldo M (1993): Linkage analysis of schizophrenia: the D₁ dopamine receptor gene and several flanking DNA markers. Hum Hered 43: 58-62
- Jonsson E, Lannefelt L, Sokoloff D, Schwartz J-C, Sedvall G (1993):

 Lack of association between schizophrenia and alleles in the dopamiened D₂ receptor gene. Acta Psychiatr Scand 87: 345-349
- **Kaplan HI, Sadock BJ, Grebb JA (1994)**: Synopsis of Psychiatry, seven 6ed, New York, Williams & Wilkins, pp932-937
- Kennedy JL, Giuffra LA, Moises HW, Wetterberg L, Sjogren B, Cavalli-Sforza LL, Pakstis AJ, Kidd JR, Kidd KK(1989):

 Molecular genetic studies in schizophrenia. Schizophr Bull 15:
 383-391
- Liu Q, Sobell JL, Heston LL, Sommer SS (1995): Screening the dopamine D₁ receptor gene in 131 schizophrenics and eight alcoholics: identification of polymorphism but lack of functionally significant sequence changes. Am J Med Genet 60: 165-171
- Liti M, Al-Dhalimy, Zhou Q-Y, Grandy D, Civelli O (1991): A TaqI RFLP at the DRD1 locus. Nucl Acids Res 19: 3161
- Maciardi F, Petronis A, van Tol HH, Marino C, Cavallini C, Smeraldi E, Kennedy JL (1994): Analysis of the D₄ dopamine receptor gene variant in an Italian schizophrenia kindred. Arch Gen Psychiatry 51: 288-293
- **Mamelak M, Chiu S, Mishra RK (1993)**: High and low affinity states of dopamine D_1 receptors in schizophrenia. Eur J Psychopharamcol 233: 175-176

- McGuffin P, Sargeant M. Hetti G, Tidmarsh S, Whatley S, Marchbanks RM (1990): Exclusion of a schizophrenia susceptibility gene from the chromosome 5q11-q13 region: New data and a reanalysis of previous reports. Am J Hum Genet 47: 524-535
- Moises HW, Gelenter J, Giuffra LA, Zarcone V, Wetterberg L, Civelli O, Kidd KK, Cavalli-Sforza LL, Grandy DK, Kennedy JL, Vinogradov S, Mauer J, Litt M, Sjogren B (1991): No linkage between D₂ dopamine receptor gene region and schizophrenia. Arch gen Psychiatry 48: 643-647
- Nanko S, Sasaki T, Fukuda R, Hattori M, Dai XY, Kazamatsuri H, Kuwata S, Juli T, Gill M (1993): A study of the association between schizophrenia and the dopamine D₃ receptor gene. Hum Genet 92: 336-338
- O'Rourke DH, Gottesman II, Suarfz BK, Rice J, Reich T (1982):

 Refutation of the general single-locus model for the etiology of schizophrenia. Am J Hum Genet 34: 630-649
- Sabete O, Campion D, d'Amato T, Martres MP, Sokoloff P, Giros B, Leboyer M, Jay M, Guedj F, Dollfus S, Preterre P, Petit M, Babron M-C, Waksman G, Mallet J, Schwartz J-C (1994): Failure to find evidence for linkage or association between the dopamine D₃ receptor gene and schizophrenia. Am J Psychiatry 151: 107-111
- **Seeman P (1993) :** Schizophrenia as a brain disease. Arch Neurol 50 : 1093-1095
- Seeman P, Niznik HB, Guan H-C, Booth G, Ulpian C (1989): Link between D₁ and D₂ dopamine receptors is reduced in schizophrenia and Huntington diseased brain. Proc Natl Acad sci USA 86: 10156-10160
- Shaikh S, Gill M, Owin M, Asherson P, McGuffin P, Nanko S, Murray RM, Collier M (1994): Failure to find linkage between a functional polymorphism in the dopamine D₄ receptor gene and schizophreniia. Am J Med Genet 54: 8-11
- Sherrington R, Brynjolfsson J, Petursson H, Potter M, Dudleston K, Barraclough B, Wasmuth J, Dobbs M, Gurling H(1988):

 Localization of a susceptibility locus for schizophrenia on chromosome 5. nature 336: 164-167
- Sherrington R, Mankoo B, Dixon M, Curtis D, Kalsi G, Melmer G, Gufling H(1993): Microsatellite polymorphism for chromosome 5 bands q11.2-13.3. Hum hered 43: 197-202
- Smeraldi E, Macciadi F(1991): The candidate gene approach to genetics of schizophrenia and other psychoses. In: Proceeding of the fifth World Congress of Biological Psychiatry, Ed by Racagni G, Brunell N, Fukuda T, International Society of Biological Psychiatry 2: 465-468
- **Sobell JL, Heston LL, Sommer SS (1993):** Novel association approach for determining the genetic predisposition to schizophrenia: case-control resource and testing of a candidate gene. Am J Med Genet 48: 28-35
- Sunahara RK, Guan HC, O'Dowd BF, Seeman P, Laurier LG, Ng G, George SR (1991): Cloning of the gene for a human dopamine D₅ receptor with high affinity for dopamine than d1. Nature 350: 614-619
- Su Y, Burke J, O'Neill A, Bernadette M, Nie L, Kipps B, Bray J, Shinkwin R, Nuuallain MN, MacLean CJ, Walsh D, Diehl SR,

Kendler KS (1993): Exclusion of linkage between schizophrenia and the D_2 dopamine receptor gene region of chromosome 11q in 112 irish multiplex families. Arch Gen Psychiatry 50: 205-211 Tsaung MT, Bucher KD, Fleming JA (1982): Testing the monogenic theory of schizophrenia: an application of segregation analysis to blind family studt data. Br J Psychiatry 140: 595-599

Zhou Q-Y, Grandy DK, Tjhambi L, Kushner JA, Van Tol HHM,

Cone R, Pribnow D(1990): Cloning and expression of human
and rat D₁ dopamine receptors. Nature 347: 76-80