Processing of an Intracellular Immature Pullulanase to the Mature Form Involves Enzymatic Activation and Stabilization in Alkaliphilic Bacillus sp. S-1

  • Lee, Moon-Jo (Department of Biochemistry and Molecular Biology, College of Oriental Medicine, Dongguk University) ;
  • Kang, Bong-Seok (Molecular and Cellular Biology Division, KRIBB, KIST) ;
  • Kim, Dong-Soo (Department of Food Science and Technology, Kyungsung University) ;
  • Kim, Yong-Tae (Department of Chemistry, Aoyama Gakuin University) ;
  • Kim, Se-Kwon (Department of Chemistry, Bukyung University) ;
  • Chung, Kang-Hyun (Department of Food Science and Technology, Seoul National Polytechnic Univerity) ;
  • Kim, Jume-Ki (College of Oriental Medicine Dongguk University) ;
  • Nam, Kyung-Soo (College of Medicine, Dongguk University) ;
  • Lee, Young-Choon (Molecular and Cellular Biology Division, KRIBB, KIST) ;
  • Kim, Cheorl-Ho (Department of Biochemistry and Molecular Biology, College of Oriental Medicine, Dongguk University)
  • Received : 1996.11.02
  • Published : 1997.01.31

Abstract

Alkaliphilic Bacillus sp. S-1 secretes a large amount (approximately 80% of total pullulanase activity) of an extracellular pullulanase (PUL-E). The pullulanase exists in two forms: a precursor form (PUL-I: $M_r$ 180,000), and a processed form (PUL-E: $M_r$ 140,000). Two forms were purified to homogeneity and their properties were compared. PUL-I was different in molecular weight, isoelectric point, $NH_2$-terminal amino acid sequence, and stabilities over pH and temperature ranges. The catalytic activities of PUL-I were also distinguishable in the $K_m$ and $V_{max}$ values for various substrates, and in the specific activity for pullulan hydrolysis. PUL-E showed 10-fold higher specific activities than PUL-I. However. PUL-I is immunologically identical to PUL-E, suggesting that PUL-I is initially synthesized and proteolytically processed to the mature form of PUL-E. Processing was inhibited by PMSF, but not by pepstatin, suggesting that some intracellular serine proteases could be responsible for processing of the PUL-I. PUL-I has a different conformational structure for antibody recognition from that of PUL-E. It is also postulated that the translocation of alkaline pullulanase(AP) in the bacterium possibly requires processing of the $NH_2$-terminal region of the AP protein. Processing of the precursor involves a conformational shift. resulting in a mature form. Therefore. precursor processing not only cleaves the signal peptide, but also induces conformational shift. allowing development of active form of the enzyme.

Keywords

References

  1. Nature v.210 Abdullah, M.;French, D.
  2. Biosci. Biotech. Biochem. v.56 Ara, K.;Igarashi, K.;Saeki, K.;Kawai, S.;Ito, S. https://doi.org/10.1271/bbb.56.62
  3. Biokhimiya v.54 Balayan, A.M.;Markossian, L.S.
  4. Enzym. Biochem. Z. v.334 Bender, H.;Wallenfeld, K.
  5. Methods Enzymol. v.1 Bernfeld, P.
  6. Appl. Environ. Microbiol. v.59 Bhattacharya, M.;Plantz, B.A.;Swanson-Kobler, J.D.;Wickerson, N.W.
  7. J. Biochem. Mol. Biol. (formerly Korean Biochem. J.) v.28 Chun, S.B.;Chung, H.Y.
  8. Ann. N. Y. Acad. Sci. v.121 Davis, B.J.
  9. Trends Biochem. Sci. v.17 Driessen, A.J.M. https://doi.org/10.1016/0968-0004(92)90381-I
  10. J. Bacteriol. v.172 Fortin, Y.;Phoenix, P.;Drapeau, G.R. https://doi.org/10.1128/jb.172.11.6607-6610.1990
  11. Techniques in Molecular Biology Gooderham, K.;Walkerand, J.M.(ed.);Gaastra, W.(ed.)
  12. Appl. Environ. Microbiol. v.49 Hyun, H.H.;Zeikus, J.G.
  13. Appl. Biochem. Biotechnol. v.33 Kambourova, M.S.;Emanuilova, E.I. https://doi.org/10.1007/BF02921835
  14. FEMS Microbiol. Lett. v.116 Kim, C.H. https://doi.org/10.1111/j.1574-6968.1994.tb06723.x
  15. Eur. J. Biochem. v.227 Kim, C.H.;Kim, Y.S. https://doi.org/10.1111/j.1432-1033.1995.tb20189.x
  16. J. Ind. Microbiol. v.12 Kim, C.H.;Choi, H.I.;Lee, D.S. https://doi.org/10.1007/BF01570128
  17. Biosci. Biotechnol. Biochem. v.57 Kim, C.H.;Choi, H.I.;Lee, D.S. https://doi.org/10.1271/bbb.57.1632
  18. Kor. Biochem. J. v.24 Kim, C.H.;Kwon, S.T.;Lee, D.S.
  19. FEMS Microbiol. Lett. v.136 Kim, C.H.;Nashiru, O.;Ko, J.H. https://doi.org/10.1111/j.1574-6968.1996.tb08040.x
  20. Biochim. Biophys. Acta v.1048 Kim, C.H.;Sata, H.;Taniguchi, H.;Maruyama, Y. https://doi.org/10.1016/0167-4781(90)90060-F
  21. Agric. Biol. Chem. v.53 Kimura, T.;Horikoshi, K. https://doi.org/10.1080/00021369.1989.10869797
  22. Appl. Microbiol. Biotechnol. v.34 Kimura, T.;Horikoshi, K.
  23. J. Biol. Chem. v.268 Klose, M.;Schimz, K.L.;van der Wolk, J.;Driessen, A.J.M.;Freudi, R.
  24. J. Gen. Microbiol. v.135 Kuriki, T.;Imanaka, T.
  25. Agric. Biol. Chem. v.52 Kusano, S.;Nagahata, N.;Takahashi, S.I.;Fujimoto, D.;Sakano, Y.
  26. Nature v.227 Laemmli, U.K. https://doi.org/10.1038/227680a0
  27. Arch. Biochem. Biophys. Lee, M.J.;Lee, Y.C.;Kim, C.H.
  28. EMBO J. v.8 Lill, R.;Cunningham, K.;Brundage, L.A.;Ito, K.;Olive, D.;Wickner, W.
  29. J. Biol. Chem. v.193 Lowry, O.H.;Rosenbrough, N.H.;Farr, A.L.;Randall, D.
  30. Mol. Microbiol. v.9 Meens, J.;Frings, E.;Klose, M.;Freudl, R. https://doi.org/10.1111/j.1365-2958.1993.tb01743.x
  31. J. Gen. Microbiol. v.136 Melaswien, H.;Paloheimo, M.;Hemio, L. https://doi.org/10.1099/00221287-136-3-447
  32. J. Bacteriol. v.164 Muren, E.M.;Randall, L.L.
  33. Biochim. Biophys. Acta v.397 Nakamura, N.;Watanabe, K.;Horikoshi, K. https://doi.org/10.1016/0005-2744(75)90192-8
  34. Starch Staerke v.41 Nakamura, N.;Sashihara, N.;Nagayama, H.;Horikoshi, K. https://doi.org/10.1002/star.19890410310
  35. J. Industrial Microbiol. v.3 Obido, F.J.C.;Obi, S.K.C. https://doi.org/10.1007/BF01569555
  36. J. Bioenerg. Biomembr. v.22 Oliver, D.B.;Cabelli, R.J.;Dolan, K.M.;Jarosik, G.P. https://doi.org/10.1007/BF00763170
  37. Proc. Natl. Acad. Sci. USA v.87 Oliver, D.B.;Cabelli, R.J.;Dolan, K.M.;Jarosik, G.P. https://doi.org/10.1073/pnas.87.21.8227
  38. Enzyme Microb. Technol. v.8 Plant, A.R.;Morgan, H.W.;Daniel, R.M. https://doi.org/10.1016/0141-0229(86)90063-3
  39. Appl. Environ. Microbiol. v.56 Saha, B.C.;Lamed, R.;Lee, C.Y.;Mathupala, S.P.;Zeikus, J.G.
  40. J. Bacteriol. v.171 Smith, K.A.;Salyers, A.A. https://doi.org/10.1128/jb.171.4.2116-2123.1989
  41. Appl. Microbiol. Biotechnol. v.21 Suzuki, Y.;Imai, T.
  42. Appl. Microbiol. Biotechnol. v.34 Suzuki, Y.;Hatagaki, K.;Oda, H.
  43. Agric. Biol. Chem. v.51 Takasaki, Y.
  44. Mol. Microbiol. v.8 van der Wolk, J.;Klose, M.;Breukink, E.;Demel, R.A.;de Kruijff, B.;Driessen, A.J.M. https://doi.org/10.1111/j.1365-2958.1993.tb01200.x