The Preparation Characteristic of Dimercaptan-Polyphenylenediamine Cathodes for Lithium Battery

리튬전지용 Dimercaptan-Polyphenylenediamine 정극의 제막특성

  • Park, Soo-Gil (Dept. of Industrial Chemical Eng., Chungbuk Nat'l Univ.) ;
  • Lee, Ju-Seong (Dept. of Industrial Chemical Eng., Hanyang Univ.)
  • Received : 1996.10.28
  • Accepted : 1997.01.20
  • Published : 1997.02.10

Abstract

The positive active material for polymer film-battery was prepared by using polyphenlenediamine(PPD) synthesized in our lab. and 2,5-dimercapto-1,3,4-thiadiazole(DMcT) with various mixture ratio. The transference measurement of surface morphology and thermal stability of the prepared composite film was carried out by using SEM and TGA, respectively. Electrochemical property and electrical conductivity of the composite film were also measured by using cyclic voltammetry and four-probe method in dry box, respectively. The thermal stability of prepared composite film was up to $200^{\circ}C$. The electrical conductivity of the composite film increased and showed the highest value(about 3 S/cm) when doped at 0.4% $LiCIO_4$ solution. And we could confirm that DMcT was effective on reactivation of PPD through cyclic voltammogram.

합성한 Polyphenylenediamine(PPD)와 2,5-dimercapto-1,3,4-thiadiazole(DMcT)을 다양한 비율로 혼합한 뒤 고분자 필름전지용 정극활물질을 제막하였다. 제막한 복합전극에 대해 SEM을 이용하여 도핑 전과 후의 표면구조의 변화를 관찰하였으며, 열적 안정성은 TGA를 이용하여 조사하였다. 또한 전기화학적 특성은 cyclic voltammetry를, 전기전도도는 dry box내에서 four-probe method를 이용하여 측정하였다. 제막한 필름의 열적 안정성은 $200^{\circ}C$ 이상이었으며, 전기전도도는 DMSO에서 제막한 후, 0.4% $LiCIO_4$로 도핑한 필름의 전기전도도가 가장 우수하였으며, 이 때의 값은 약 3S/cm이었다. 또한, 전기화학적 특성을 조사하여, DMcT가 PPD의 전기화학적 활성에 영향을 미침을 확인할 수 있었다.

Keywords

Acknowledgement

Supported by : 정보통신

References

  1. Synth. Met. v.65 A. G. MacDiarmid;Arthur J. Epstein
  2. Synth. Met. v.69 E. M. Genies;S. Picart
  3. J. Electrochem. Soc. v.142 K. Kanamura, Ⅱ;Tamura, S. Shiraishi;Z.-I. Akechara
  4. The Technic and Application of Conductive Polymer v.319 吉野勝米(編);請談社
  5. Proress in Batteries & Battery Materials v.14 N. Katagiri;T. Fujii
  6. Polym. Adv. Tech. v.4 T. Kabata;T. Fujii;O. Kimura;T. Samura;Y. Matsuda;M. Watanable
  7. J. Electrochem. Soc. v.142 T. Tatsuma;T. Sato;N. Oyama
  8. Faraday Discuss. Chem. Soc. v.142 T. Tatsuma;T. Sato;N. Oyama
  9. Synth. Met. v.13 J.-C. Chiang;A. G. MacDiarmid
  10. Conducting Polymer A. G. MacDiarmid;J.-C Chiang;A. F. Richter;N. L. D. Somasiri;A. J. Epstein;L. Alcacer(ed.)
  11. Chem. Ber. v.42 R. Willstater;S. Dorogi
  12. J. Am. Chem. Soc. v.184 D. M. Mohillner;R. N. Adams;W. J. Argensinger, Jr
  13. J. Am. Chem. Soc. v.184 F. Wudl;R. O. Angus;F. L. Lu;P. M. Allemand;D. J. Vachon;M. Nowak;Z. Lui;A. Heeger
  14. J. Electrochem. Soc. v.136 J. F. wolf;C. E. Forbes;S. Gould;L. W. Shacklette
  15. Synth Met. v.72 Jamshid K. Avlyanov;Yonggang Min;Alan G. Macdiarmid;Arthur J. Esptein
  16. J. Electrochem. Soc. v.142 S. Ye;D. Belanger
  17. Synteh. Met. v.69 E. M. Genies;S. Pieart
  18. J. Electrochem. Soc. v.138 M. Liu;S. J. Visco;L. C. De Jonghe
  19. Electrochem. Acta v.89 Baril, D. Gautier;M. Lasia
  20. Solid State Ionics v.73 G. Chiodelli;M. Scagliotti