Journal of the Korean Institute
of Industrial Engineers
Voi.23, No.f, March, 1997

Indirect Decentralized Repetitive Control for the
Multiple Dynamic Subsystems

So0 Cheol Lee*

Abstract

Learning control refers to controllers that learn to improve their performance
ot executing a given tosk, bused on experience performing this specific task.
In a previous work, the authors presented a theory of indirect decentralized
learning control based on use of indirect adaptive control concepts employing
simultaneous identification and control. This paper extends these results to
apply to the indirect repetitive conirol problem in which a periodic (i.e.,
repetitive)] command is given fo o control system. Decentralized indirect
repetitive control algorithms are presented that have guaranteed convergence
to zero tracking error under very general conditions. The original motivation
of the repetitive control and learning control fields was learning in robots
doing repetitive tasks such as on an ossembly line. This paper starts with
decentralized discrete time systems, and progresses to the robot application,
modeling the robot as a time varying linear system in the neighborhood of
the desired trajectory. Decentralized repetitive control is natural for this
application because the feedback control for link rotations is normally
implemented in o decentralized manner, trecting each link as if it is
independent of the other links.

i Keywords : decentralized conirol, repetitive control, robot
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1. INTRODUCTION

A large number of control systems in use
execute repetitive operations, e.g., controllers
for robots in assembling and manufacturing
systems. Recently, twoe bodies of work have
appeared in the literature to develop controllers
that learn to improve tracking performance
based on previous experience at performing a
specific command. These are known as repeti-
tive control and learning control. Some exam-
ples of learning control are given in the
references [1-19], and some recent results in
repetitive control are listed in [20-29}

Repetitive control and learning control aim
to make explicit use of knowledge that the
command, and perhaps certain disturbances, are
repetitive. Repetitive disturbance functions are
common in systems executing the same com-
mand repeatedly. Learning control applies to
gituations in which the system returns to the
same initial condition before the start of each
tepetition. By contrast, the repetitive control
problem applies to system where the command
is simply a periodic function of time, and hence
the system may not return to the same initiat
condition at the start of the next repetition, and
in fact choices of the feedback control and the
learning control during one period of the
periodic task will affect the initial conditions
seen for the next period of the task. In addition,
transients can propagate from one repetition to
the next. These properties make the issue of
stability of the learning process very different

in the repetitive control problem than in the
leamming control problem.

Our aim in this work is to develop
decentralized repetitive contrel laws that have
guaranteed convergence to zero tracking error.
Since the mitial conditions at the start of each
repetition are related to the coupling of the
dynamics between the decentralized subsystems,
they introduce a new difficulty in the decen-
tralized repetitive control problem that was not
present in the decentralized leamning control
problem treated in [15]. Here we extend the
adaptive control based repetitive control
methods of reference [20], making use of the
results of [15] in order to produce decentralized
repetitive  control  algorithms. These have
guaraniced convergence to zero tracking error
for each of the subsystems in spite of the
dynamic interactions between these subsystems.

Repetitive control and learning control have
application to all tracking problems in which
the command is given repeatedly, but the
application that motivated the development of
the field starting in 1984 is robots performing
repeated tracking commands, for example on
an assembly line. Nearly all robot controllers
are designed with each joint axis having its
own coniroller, and this controller knows only
feedback information about its joint angle and
angle rate and nothing about the other joint
variables. The effect on the motion of one joint
due to motion of other joints, such as through
centrifugal force effects, is treated as a
disturbance that the feedback control law must



address,

The question arises, what happens if a
separate repetitive controller is used with each
of the separate feedback controllers of the robot
arm, Such an application represents use of a
decentralized repetitive control. A serious issue
is. whether the interactions in the dynamics of
the systems governed by the separate leaming
controllers could cause the learning processes
to fail to converge. In a previous paper [13],
this question was addressed for the most basic
form of learning control that is based on use
of integral control like concepts applied in the
repetition domain, In [15], there are various
more sophisticated learning control approaches
inrcluding one that makes use of indirect
adaptive contrel ideas applied to learning in
the repetition domain [6]. This approach has
an important advantage over the simpler
learning control law related to integral control
concepts, because it can guarantee convergence
of the learning process to produce zero tracking
error,

The system equations are nontinear in the
rebotics problem. Here we will consider that
the motion takes place in the neighborhood of
the desired trajectory, and hence it is possible
to represent the system as a linear one,
linearized about the desired trajectory, Then the
system equations are linear, but with time
varying coefficients. By proper choice of the
joint variables, the equations for each link can
be made to involve only the control action for
that link. Then the only coupling between the
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dynamic equations for the links is a dynamic
one in the system matrix. There is no
interaction between the axes in the input and
output coefficient matrices. We produce decen-
tralized repetitive control laws for this type of
decentralized systern model.

One of the interesting properties of the
learning control problem is that in most
methods, one can handle time varying systems
with essentially the same mathematical ease as
time invariant systems. Note that in a robot
there are various interaction forces, such as
centrifugal force on one link produced by
roration of a link closer to the base of the
robot arm. When linearized about the desired
motion they appear as the sum of a repetitive
disturbance term to the first link’s controlier
associated with the other link’s motion as if it
were along the desired trajectory for that link,
and another term which is a linear coupling in
the system matrix representing the linear
corrections for the disturbance when the
disturbing link deviated from its desired
trajectory. Also, external disturbances such as
the torque produced by gravity on a link, when
linearized about the nominal trajectory, produce
a disturbance forcing term that repeats with
each repetition of the task together with a
linear term with time varying coefficient that
corrects for deviations in the gravity effect
when the {link deviates from the nominal
trajectory. Hence, the aim of the present
investigation is to obtain decentralized repeti-

tive control Jaws with guaranteed convergence



4 Soo Cheol Lee

to zero tracking error, when:

1) Each decentralized repetitive controller
knows only measurements from its sub-
system.

2) Each subsysiem has its own decentralized
feedback controller operating Gif desired),
which makes use of measurements form
it's subsystern only.

3) The complete system being controlled has
coupling between subsysiems in the sys-
tem matrix, but not in the imput and
output matrices.

4) The complete system is governed by a
set of linear differential equations with
possibly time varying coefficients, and
with unknown repetitive forcing functions
(which represent the disturbances from
other subsystems along the nominal
desired trajectory, or disturbances such as
gravity torque along the desired trajecto-
ry).

This paper presents for the repetitive control
problem the same kind of treatment presented
in the indirect decentralized learning control
problem in [15] based on indirect adaptive
contrel ideas, A fundamental aspect of the
learning control problem is that it starts each
repetition of the command from the same initial
condition. In the repetitive conirol problem
where control actions and transients during one
repetition influence the state at the start of the
next repetition, we make the assumption that
we have an upper bound on the number of

time steps needed for transients to decay. This

assumption allows us to reduce the decentral-
ized repetitive conirol problem to one that is
similar to the decentralized leaming control
problem and then apply the methods of [15].
However, we first consider repetitive conirol
in centralized systems, and then progress to the
question of how these control laws can be
made to apply in the decentralized implemen-

tation.

2. ADAPTIVE CONTROL BASED RE-
PETITIVE CONTROL IN CENTRAL-
1ZED SYSTEMS

Consider first, a system of the form

H=A (Ox(0+B (ulrw (0 (1
y(=C(tix(r)

where the A (0, B (), and w (1} are
periodic with period pT. This system can be a
model that represents motion of a nonlinear
robot system linearized about the desired
trajectory, producing a linear system with time
varying coefficients. The periodic driving term
W, can contain periodic disturbances as seen
along the desired trajectory, such as from
gravity torques. Equation (1) may represent a
system with feedback control operating to
execute a periodic command, and then the w
term also contains the periodic command (see
the next section). Assuming that a zero order
hold (with sample interval T) is used on the

input to this system, it can be converted to a
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difference equation without approximation

xk+ 1= Ao+ BUu(k)+wik) (2)
yk)=Cl)xk)

where again the coefficient matrices and the
exogenous driving term are periodic, with
period p. In terms of special cases of these
equations, we can define a hierarchy of models:
l. Time-invariant linear system with w=0.
2. Time-invariant linear system with w=0.
3. Time-varying linear system with w=0 or

w=0},

2.1 Repetitive Control for Time-Invariant
Systems

Reference [18] discusses such a hierarchy for
learning control systems using adaptive control
methods. Similar statements apply to the
repetifive control problem. In the case of a
model of the Type 1 above, one can simply
apply any adaptive control algorithm that
produces zero tracking error in the limit as time
goes to infinity in time invariant systems of
Type 1. The majority of adaptive control laws
are designed for this case (although their main
application is in time varying or nonlinear
systems). When a repetitive command is given,
this controller becomes a repetitive controller.
There is no need for a distinction between
adaptive control and a repetitive controller
using the same adaptive ideas in this case, for
centralized control problems. If the input

commands to an adaptive controller are suffi-

ciently rich then it will eventually produce zero
tracking error for all feasible commands. If the
input commands are limited to a single periodic
input, an adaptive controller will learn enough
10 produce zero error for this command.
Knowledge that this is the only command of
interest, is not extra information that can be
used to simplify the problem, or speed up the
convergence, in this case.

The situation is somewhat more interesting
in the case of a system of Type 2. Adaptive
control algorithms are not designed to handle
an unknown external input. Sometimes people
try to model the external input often with some
ad hoc model type, using some criterion such
as finding the minimum disturbance of the
chosen form that can model the data. Without
such an added criterion, there is not sufficient
information to distinguish influence in the data
produced by the system from influence in the
data produced by the unknown disturbance. In
the repetitive control problem we are in a much
better situation. The exogenous input w is
known to repeat with the same period as the
command. If one differences the input and
output data between the current repetition and
the corresponding data from the previous
repetition, then the periodic exogenous term
drops from the difference equation that models
the input-output refationship for this differenced
data. Then using this differenced data in an
adaptive control law will converge to the
change in the control needed to produce zero

tracking error. Hence, one can easily eliminate
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the unknown periodic driving term from the
equations, and there is no need to ftry to
identify it. Again, there is no major difference
between adaptive control and repetitive control
based on the same adaptive concept. The
differences are that one must delay application
of the adaptive law until after the first
repetition is completed, and then use the
acaptive control signal as a change in the
control, rather than as the control itself.

2.2 Repetitive Control in Time-Varying
Systems —the Full Dimensional Input
and Output Case

Reference [20] presents a repefitive control

algorithm for the case when the full state is
measured. We review this algorithm here, as
our starting point for developing decentralized
algorithms. The sclution to (2) can be written

as
Y=CO) [ T AR | xo)
* 5 CO) | M1 A® | B(2 )l T)
T

+ !ZI_C(S) [ 72, AR | wlT) (3

T=f

Here the product notation is understood o
mean that the product of matrices is performed
in the order of decreasing time step arguments
from left to right, and a product whose upper
limit is smaller than the lower limit is taken
10 be the identity matrix.

In the repetitive control problem the time

varying coefficients repeat every repetition, and

we must use this information. It is convenient
to package the complete history of a repetition
in matrix form. For the rth repetition, the initial
condition is at time step rp, the computed
values of x and y are at time steps rp+]
through (r+1)p, while the choices of control
made are for time steps rp through (r+)p—1.
Define

Mrp+k)=xk}k=0,1,2,-, p

where the subscript indicates the repetition
number starting from 0, and the argument &
indicates the time step within the repetition.
Note that the periodicity of the coefficient
matrices make A(jp+k)=A(k) and similarly for
B(k), C(k). Form the matrix of the history of

a variable for one repetition as

vl T yTQ@) -~ 3T
u=lu 0 2 K1) - ulp—DF

Note the shift between the time arguments
used in the control history versus the output
history (when used, the state history follows
the same rule as the output history).

In order to eliminate the repetitive distur-
bance, we take the difference between the

histories of two successive repetitions defining

5;X=Xr_2r—l

and similarty for any other history matrix or

any component. Then writing equation (3) for



one repetition starting at time (r—1)p, and
coing the same starting at rp, and then
differencing the results, produces the equation

8,y=A8 X0)+PJ u 4

where the notation & x(0) means the initial
value of the state at the start of repetition r
(at time step rp) minus the state at the start
of repetition r—1(at time step (r— D)p). The

coefficient matrices are given by

S=[C0AOY [y ..

ClIBl) f
f. { QO )

Lﬂp}mb;p—ldlﬂ]ﬂﬂ] 09 0, LA R0 .. -1 |

O, LAENT

0
|
. (5)

The repetitive controller given in [20]
assumes that there are n independent measure-
ments and n independent inputs, where n is
the order of the difference equation (3). This
controller is easily obtained from the above
formulation. Since we are measuring n indepen-
dent variables, we can without loss of general-
ity, take the measured variables as the state
variables, and make nc distinction between
output and state vectors. Equation (4) then
represents a set of ARMA models written in
the repetition domain for different time -steps
in this time varying system. Actually, the
equation is a special case in which the moving

average part of the equation is missing, leaving
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us with an MA or Moving Average model.

An indirect repetitive controller is then easily
generated using any recursive identification
algorithm such as recursive least squares which
aims to identify the coefficient matrices in
equation (4), and based on these one applies
a one repetition ahead controller

rt O (6)
=P —y, ) — A 5, x0)]

Here the hat over the matrices indicates their
estimated values, and the desired changes to
be produced in the output histories has been
substituted for &,y when picking the change
to make in the control history for the upcoming
repetition, & u, This control law is guaranteed
to produce convergence to zero tracking error
as the repetitions progress (in the absence of
non repetitive disturbances or noise), although
it need not produce convergence to the actual
values of these matrices.

This control law can be applied starting with
the second period of the periodic command.
During the first period, one can use a feedback
controller to execute the command, and then
it is the job of the repetitive controller to
eliminate the error that remains. If there is no
repetitive driving term w, one may wish to use
an adaptive control law on the during the first
period. Otherwise, one could use an adaptive
control law on the second period (differencing
the data with the first repetition so that w is
eliminated from the equations), in addition to
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the feedback control law, The adaptive control
‘aw 1is not capable of producing zero tracking
error in this time varying system, but if the
coefficients are slowly time varying, or more
arecisely, if the time needed for adaptation to
changed coefficients is relatively quick com-
sared to the speed of variation of the time
varying coefficients, then the adaptive control
law will improve the tracking performance
during this second period. Then starting with
the third period. 1t is the job of the repetitive
controller (6) to eliminate the errors that the
adaptive controller cannot eliminate due to its
time lag in wracking the system parameters.
All of the centralized repetitive controllers
developed above, have initial condition terms
that involve the system A rnatrix. Here we wish
to develop decentralized repetitive control laws
that are appropriate for time-varying and also
time-invariant systems execiting repetitive com-
mands. This initial condition term is trouble-
some because it wiil usvally make it necessary
for each subsystem to know other subsystem
initial conditions, and thus precludes decentral-
ized implementation. In a later section we will
develop still another centralized repetitive
control law, based on the assumption that we
have an upper bound on how long it takes the
transients of the system to decay to a negligible
level. This assumption allows us to eliminate
the initial condition term appearing in the
above repetitive control laws, and will make %
possible to generate a decentralized repetitive

control law with guaranteed convergence 10

zero tracking error. before we do this, we first
set up the system equations for the decentral-

ized problem.

3. MATHEMATICAL FORMULATION
OF THE DECENTRALIZED SYS-
TEM

Consider a time-varying or time-invariant

discrete time system of the following form

5 D)= A, 500, B+ T A, (0%, (0
i
+B, (Kvik) + w, (k)
3= C, (kx, (O
=1,2,3, .., s

We will later consider differential equation
system with a similar structure, and it is such
a modei that applies to robots when linearized
about the desired trajectory. System (7) con-
tains s subsystems. The input and output
matrices for the different subsystems are
uncoupled, but there is dynamic coupling
between the subsystems represented by the

coupling matrices A The control input to

o.ij"
subsystem { is v, its state is x,; and its
measured output is y,. Thew, ; represent distur-
bances that repeat with each repetition of the
task. The subscript ¢ refers to the open loop
system model.

Now consider that each subsystem has its
own decentralized feedback controller with

feedback of only that subsystem’s measured
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output. These controllers could be simple
proportional controllers with rate feedback
which is a common approach in robotics, or
they can be more complex controllers including
controller dynamics and a contreller state
variable. We include all such possibilities in
the following formulation:

vj(k) = Vg, ,(k) + Iﬂ(k}
Ve, ,(k) = CFB, ,(k) XFB, e(k)
S KW 0 — 3R] ®)
xpg (bt 1) = Agg ;{0) xgg (k)
+ BFB,;(k)[yf(k) - y!*(k)]

Here, the input v; is the sum of the feedback
control signal vpy i and the repetitive control

signal ;. The desired output of the system is
y*k); k=1,2,3,..p 9)
and 1 is the task of the repetitive control signal
ulk); £<0,1,2, .., p—1 (10)

to converge on an altered input command to
the feedback system that causes the actual
measurements y{k) to correspond with these
desired outputs. When dynamic controllers are
used, the feedback control signal for each
system { jis determined as the output of this
confroller’s dynamic state variable equation in
equation (8). When output feedback is em-
ployed, then the dimension of the controlier

state reduces to zero in equation (8), leaving

only the second term on the right in the middle
equation,

The system of importance to the repetitive
controller {or controllers, in the centralized
case} is that relating the repetitive control
signal u; to the measured system response. This
is accomplished by combining equations (7}
and (8) to form the closed loop system dynamic

equations

If(k'i' 1) = A”(k)x!(k)
J:l

J=i
i=1,2,3,..,5

The closed loop system matrices in this
equation are

[ A, 40+ B, IDKKC, (B B, (1) Cpy (K} B

(12
B (C, 0 a1

4,40 0
A‘]m{o ’ 0]

Blb=[8 (W of
CB=[C, & 0]

and the state vector for system i has been

augmented te include the controller state as
&=l xby OF (13}

The exogenous term w; is still an input that

repeats every time the command is given to

the system, but now it contains the repetitive
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ccmmand as well as the repetitive disturbance

w, k) — B, (k) K (k)y*(k)
w; (k) = [ ’ ] 14
- BFB, ‘(k) yi* (k)

The set of equation in {11) can be combined
to form one overall system equation, in the
form given in equation (2). Hence, we have
centralized repetitive control laws that can be
applied to this problem, as developed above,
However, since the feedback controllers for
¢ach subsystem are decentralized, and only use
fesdback from the state variables of that
subsystem, it would be desirable to develop
separate repetitive controllers for each subsys-
tem as well. Each repetitive controller wouid
learn a new command to give to the feedback
centroller for that subsystem, so that it
produces the desired trajectory in the limit as
the number of repetitions tends to infinity. And
this must be accomplished using only data
available to the subsystem feedback controller,
and the result must apply independent of the
dvnamic coupling that may exist between the
subsystems. With this aim in mind, we develop
the following repetitive controller, and then
stow that in a decentralized system of the form
of equation {11) it automatically produces a
decentralized repetitive controller.

4. A DECENTRALIZED REPETITIVE
CONTROL LAW WITH GUARANTEED
CONVERGENCE TO ZERO TRACK-
ING ERROR

The basic assumption needed, is that we
know a bound on the number of time steps
that are needed for transients to decay to a
negligible value. Of course, if necessary, one
can perform tests to ohserve the time of decay.
This assumes that the system under considera-
tion is asymptotically stable, which is insured
by the decentralized feedback controllers in the
system model described in the previous section.

The bound on the number of time steps can
be any number. For simplicity in the mathemat-
ical development we will assume that the
number of steps is p—1 or less — the precise

assumptions are that

Cpiy) | IS AW | BG,) (15)
is negligible when multiplied by any change
in control that we may choose to make, for all

i,. Similarly, we will assume that
Clp+i,) | 1™ AW | (16)

is negligible when multiplied by any change
in initial condition that we may generate. There
will be a third similar assumption detailed later.
In simplified terms we are saying that the
transients are dead within one repetition of the
command period, and that if the commands are



not changed over the same time period, then

the system state reached is independent of the
iritial conditions and of the controt history
prior to this period. An extra n steps are
allowed as initial conditions for an nth order
difference equation if needed.

if the feedback controller can be expected
to do a reasonable job of tracking the desired
command history and the repetitive control is
present to eliminate remaining errors, then it
is necessary that the time for decay of
transients be shorter than the time associated
with substantial change of the input, ie, it
should be less than — 1. Thus the choice made
here, is natural in many applications. In the
event that one wishes to pick the number of
time steps needed for decay of transients to a
negligible’ value to be a larger number, then
by setting it equal to a multiple of p, minus
n , then the changes needed in the repetitive
control law developed below are obvious,

The assumption that transients are gone in
p-—n steps causes us to perform the learing
process during alternate repetitions only. If we
were to assume a longer time for the transients
to become negligible, we would obtain the
same type of repetitive control law, but we
would be required to skip more repetitions
berween the repetitions during which we learn.

With these assumptions, we can now rewrite
equation (3) in the following form, after
dropping those terms which we consider to be
negligible
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where the new difference operator takes the
value of the variable during the rth repetition
minus the value swo repetitions earlier, for

example
Sy=y -~ (18)

Equation (17} can be rewritten in terms of
the histories of the inputs and outputs during
the repetitions as

O, y=P'8,_ u+P% u (19)

;

which is to be compared to the previous
version of this equation that appeared in
equation {4). The matrix P is the same as in
equation (4), while the matrix P’ is a new
matrix containing more impulse responses
terms coming associated with changing the
learning control inputs in the previous repeti-
tion,

As stated previously, we agree not to make
any changes in the input # every other
repetition, in which case equation (19) reduces
to

50- P 0

This equation has the same form as the that
used in the decentralized learning control
problem in reference {15], the only difference

being the substitution of &, for &, . Hence,
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the learning control laws developed there can
be applied here as well. Two different forms
were developed in [15]. Each relies on the fact
that when equation (20} is written in terms of
the partitions for the ith and jth subsystems,

&,y =P, 6,4+ I P; 8 u 21

the diagonal partitions of the coupling matrix
Py are zero. This matrix represents the pulse
response of subsystem i to unit pulse inputs in
the control inputs for subsystem j, while P;
represents the pulse response of subsystem i to
unit pulse inputs in control channels for
subsystem 1. One of the decentralized repetitive
conirol algorithms follows an agreement be-
iween the subsystems that only one subsystem
adjusts the repetitive contrel signmal in any
repetition, and which subsystem is doing the
adjusting is rotated in a preassigned manner.
This approach works here as well, but it is
slower in the repetitive control case, because
a0 adjustment of the repetitive control signal
is allowed every other repetition. The approach
zan work well if one has a system model which
is relatively close to the true system. The
second method presented in [L3] is the
preferred method when there is poor a priori
knowledge of the system. It takes advantage
of the fact that the block diagonal elements of
P represent the products Clk+1)B(k). For the
decentralized structure of the difference equa-

tions given in equations (7-14), this product

decouples according to subsystems. Hence,
each subsystern can learn simultaneously, one
time step per repetition. First, each subsystem
i uses its own input-output data to identify its
C, (k+1) B; (k). Knowing this matrix aliows that

subsystem to solve
5, y{k+ )= Clk+ 1) B S ik} (22)

for the needed change in its control to
produce zero tracking error at the current step
in the next repetition m which a repetitive
control signal is applied. As in (15], when the
governing difference equation model comes
from a linear differential equation with the
subsytems decoupled in the input and output
matrices, or when the actual system started as
a nonlinear system, this process of identifying
and choosing the learning control at a particular
time step may be repeated several times in
order to eliminate the effects of the small
coupling between subsystems in the difference
equation input matrices for these cases.

To start the learning process, using (20-22)
with its new difference operator, we make two
repetitions with the feedback control signal
only. Then in the next pair of repetitions, we
use feedback only for the first, and start the
learning of the first time step in the second
repetition. In the third pair of repetitions, the
first is again feedback only, and during the
second repetition of this pair, we can complete
the learning for this time step if the product

of input and output matrices to be identified
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in (22} is a scalar, and we can progress to
learning the next time step in the next pair of
repetitions. If it is a multiple-input, muitiple-
putput system, more repetitions wust be
allocated for this time step before progressing.
Also, if there is small coupling between the
subsystems in the input matrix introduced by
discretization of a decentralized differential
equation, or if there are nonlinear effects
Jresent, it may be prudent to allocate some
extra repetitions to learn each time step.
After the wave of learning has progressed
through one complete repetition, then the
repetitive control signal obtained will produce
zero tracking error (in the absence of random
noise) for every other repetition, and for the
repetitions between these, the feedback control
alone is applied. This repetitive control signal
produces zero tracking error during a repetition,
but it is specialized in the sense that it only
produces zero tracking error if the initial
conditions for the repetition are those set up
by a repetition in which feedback controi is
used, Hence, we cannot simply apply this
repetitive control signal for all repetitions and
expect to get zero tracking error for all
repetitions. Instead, we must continue the wave
of learning through p more steps, i.e., we let
the wave of leaming progress through the
repetitions which had previously used feedback
control only. The repetitive control signal
obtained for such a repetition has as its initial
conditions, those that are obtained by the
repetitive control that produced zero tracking

error for a repetition following a feedback only
repetition. Because of assumptions (15) and
(16), these initial conditions are along the
desired trajectory. Hence, we can now apply
this second learning control signal to all future
repelitions in order to obtain zero tracking error
at all times. Note that in analyzing the number
of steps needed to eliminate the effect of
different initial conditions, one must remember
that not only the transients from the initial
condition must be gone, but the transient
effects produced by any control actions that
were influenced by the initial condition, must
also be gone.

Hence, the repetitive control algorithm for
learning in a wave with assumptions (17) and
(18) and a similar assumption discussed below,
treats the repetitive signal as a signal of period
2p, letting the wave of learning progress 2p
time steps. And then the repetitive signal
obtained for the second set of p steps is used
throughout all futare repetitions, and the
repetitive control signal for the first p steps
can be forgotten. While learning the first p
time steps, the first term i (19) is zero during
the repetitions that learn, because no repetitive
control signal is applied every other repetition
making &,_,# equal to zero. During the
second p time steps of learning, this term is
zero because the same repetitive control signal
is applied for both repetitions in this difference.

What is required for the repetitive signal
obtained for the second set of p steps to be

the desired signal, is that the initial conditions
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be those needed for steady state repetitive
operation with zero tracking error. In order to
see what this implies, consider equation (4)
with the differencing removed and with the
d:sturbance term included

¥ = Axpp(0) + Pui+ Pyw

Here Py, is the same as P but with the input
influence mawrix factors removed, and the
initial condition xpg (0} is set to that produced
ar the end of a feedback contrel only repetition.
The repetitive signal learmned for the first p
sieps, which we denote by ¥ pp , produces the
desired trajectory , and is given by

upg=P B Axpg(0) — Pyw]

The state reached at the end of a repetition
using this repetitive control signal is given by

Kp) = [(A), xgp(0) + (P), gy + (Py)pw

where (A), is the pth row partition of 4,
(Pg), is the pth row partition of matrix P with
the output matrices deleted, and similarly for
(P,),. This state is the initial condition for the

second set of p steps, and it can be written as

x(p) = [(A)p — (P)pP ™ 'Alxgp(0)
+ (PP '[p* — Pywl+ (Pl w (23)

Examination of [(A)p — (Pg)aP ™ ‘A Jshows
that every term contains the system matrices A

or A{k) to the pth power. We assume that this
factor is sufficiently small that the first term
in equation (33) is negligible, and hence the
initial condition for the start of the second p
steps, after the system has followed the desired
trajectory for the previous p steps, is indepen-
dent of the initial conditions xzg(0).

This repetitive control algorithm is essential-
ly the same for time-varying systems and for
time-invariant systems. The distinction is that,
in a tme-varying system, repetitions for
learning the product Ck+1)B(k) must be
allocated for every time step of the first p time
steps of learning, but not for the second p steps
of the wave of learning. Once the value of the
product is known for any specific time step £,
then in the next repetition in which repetitive
control is applied, the error at step k+1 can be
made zero. In the time-invariant case, once the
product C.B; is learned in the first step of the
repetition, the same value can be used for all
future steps of the repetition without allocating
repetitions for identification purposes, making
the wave of zero error progress more quickly.

By comparison to leaming control, the
repetitive control problem has paid a price in
rate of convergence to zero tracking error,
because of the necessity to skip every other
repetition or more, depending on the time
needed for transients to decay. It was noted in
[15] that the decentralized learning control
would produce zero tracking error in exactly
the same number of time steps as the
centralized learning controller for systems of
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tie form of equation (11)~ie. no penalty was
raid for decentralized implementation in differ-
ence equation systems (in differential equation
systems of the same form, there would be some
penalty). However, there is a penalty paid in
the repetitive control case when using this
repetitive control algorithm.

The repetitive control law is generated for a
deterministic model, and is guaranteed to
converge to zero tracking error in a finite
number of repetitions for the time varying
difference equation model with the subsystems
decoupled in the input matrix.. If there is
rendom noise in the system, then one will not
have zero error at the end of this number of
repetitions. One can allocate more repetitions
for each time step of the wave, in order to
allow averaging of the noise effects in the
identification for that step. Since the learning
process praceeds in a wave progressing from
the beginning of a repetition to the end of the
repetition, it is ambiguous whai action one
should take once the wave of the learning
process is completed, if the noise effects have
prevented one from obtaining the desired
tacking accuracy. One can start a new wave
of the learning process, combining the data
available for identification from all past repet-
itions. Alternatively, one can switch to the
integral control based learning from [13] after
th: completion of the wave, as was done in
[15] .

The mathematical model of interest for

application to robot problems has the same

form as we have been treating, ie. equation
(11), except that instead of being a difference
equation with the given structure, it is a
differential equation with this structure, When
such a differential equatior is discretized, what
was zero coupling between subsystems in the
input influence matrix, becomes small coupling.
It was shown in [13, 15]) that if one samples
sufficiently fast, then the decentralized controi
algorithms  will still work. This statement
applies here as well, If one samples fast
enough, then the error at the end of the
learning wave can be made arbitrarily small.
Then by switching to the integral control based
method, one obtains convergence to zero
tracking error asympiotically as the number of
repetitions tends to infinity. The price that is
paid is convergence asymptotically instead of
in a finite number of steps.

The development of the above algorithm for
repetitive control using a wave of learning, was
developed without any reference to whether the
learning is centralized or decentralized, Hence,
it represents a repetitive control algorithm for
centralized learning as well. In centralized
applications it must compete with the algo-
rithms obtained previously in this paper, and
one expects that one could obtain faster
convergence with one of the previous algo-
rithms. When applied to systems with the given
decentralized structure, the learning in a wave
allows each subsystem to learn in a decentral-
ized manner. The advantage of the new
algorithm is then its ability to be applied in a
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clecentralized manner.
5. NUMERICAL EXAMPLES

In this section we apply the indirect
decentralized repetitive control law of equation
(22) to the linearized model of the polar
coordinate robot, with PD contrellers for each
joint, for motion in the horizontal plane. In the
repetitive control problem we need a desired
trajectory that is a periodic function of time,
and we pick the functions shown in Figure. 1
obtained from simple trigonometric functions.

wbyrsem T

oK

i /\

] r ]
Lime frec) e (300

Figure 1. Desired trajectories for polar robot

moving in the horizontal plane. Subsystem 1 is
radial motion in reters; subsystem 2 is angular

moticn in radians.

The theory developed here applies to linear
;ime-invariant systems, and also to linear time-
varying systems. The original motivation for
much of the literature in learning control is for
application to robots which are nonlinear
systems. The main objective of the paper is t0
develop decentralized learning contrel for such
applications, and the theory developed models
the nonlinear robot equations as linearized in
the neighborhood of the desired trajectory,

which produces linear time-varying equations.

This example illustrates this process by appli-
cation of decentralized learning control to a
polar coordinate robot moving in the horizontal
plane. First, decentralized learning control is
applied to the time-varying linearized equations
model, and then application to the full

nenlinear model is studied.

. e '] i
G%’fﬁ —_—

Figure. 2 Configuration of polar coordinate robot

The nonlinear equations for motion of the
polar coordinate robot iri Figure. 2 are given

as

(mg+ mp) He) — [mgr(d) + m{r(6)+ 1]

9.(e7 = F() (24)
s+ mgr(eF + m () + D7) 6,0

+ Ampr) + my(r0) + DIKD 6(5) = M(D)

where r(r) is the radial extension of the
prismatic joint measured from the cenier of the
support point to the center of mass of the
prismatic beam (without load), and ¢ () 1s the
angle of rotation of the beam about the vertical
axis. The beam mass is mg=39.28kg, its half
length is /=0.6, and its moment of inertia about

the vertical axis is /:=1.93kgm. The mass of
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the point mass load located at the end of the
beam is m,=10kg. The force and moments
applied to each joint are supplied by propor-
tional plus derivative feedback controllers given

by

"W=K [H) — 0]+ K IHO — #= D]+ w()
M=K [0 — 6*D]
FKIO0) — 62+ ) (25)

where, X, , K, , K, K, are the feedback gains
with values 98.6, 443.5, 450.9, 182.2 respec-
tively, and u(z) and u(f) are the learning
control signals.
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Figure. 3, Error histories for indirect

decentralized repetitive control of the polar
coordinate robot executing the trajectories in
Figure. 1, with the time period tp=10 sec.
Subsystem 2 is shown.

Figure 3 shows the resulting error history for
the angular motion of the robot when the both
joints are learning to execute this desired
trajectory. The time period of the repetitive
command is chosen as 10 sec in this example,
and the sample time for the learning is 1 sec.
One repetition is skipped between each repeti-
tion that Jearns. For those repetitions that learn,

cne repetition is devoted to identification, and

in the next repetition that is devoted to
learning, the learning signal is adjusted using
the identification result. Then the learning
progresses to the next time step. Examining
Figure. 3, in repetitions 1 and 2, i.e. from 0
to 10 sec, and from 10 to 20 sec, feedback
control alone is applied. The first repetition
allows the appropriate initial condition to be
set up at the beginning of the second repetition,
and data from this repetition is used in the
modified difference of equation (18) when
computing the learning control for repetition 4.
The next pair of repetitions vses feedback alone
in the third repetition, and in the 4th tearning
is started for the first time step, which means
that differenced data is obtained to idemtify
CA1)BL0). This is followed by repetition 5
with feedback only, and then in repetition 6
the identification is used to correct the error,
producing the zero error peoint at time 51 sec.
Repetition 7 (from 60 to 70 sec) uses feedback
only. In repetition 8, the identified value of
CA1)B,(0) is used to compute a learning control
signal, and the resulting data is used to identify
CA2)B{1), This is used in repetition 10 to
correct the repetitive control signal for time
step 2 of the repetition. This pattern is
continued until p=10 steps are learned at time
420 sec. At this time we have close to zero
error for every other repetition, and in between
we are using feedback only. The error is not
exactly zero due to the coupling intraduced
between the subsystems by the discretization,

and because of the presence of residual
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transient effects. The wave of learning contin-
ues past p to 2p. From 420 1o 430 sec feedback
is used, and in 430 to 440 the same leamed
signal is again applied, in order to produce a
zero difference in the first term of equation
{29). The same process of identification fol-
lowed by adjustment of the repetitive control
signal was used, but in theory, we could use
the afready identified values of the Ci(k+ 1)BAk)
for all time steps, in order to increase speed
of the wave of learning progressing from p to
2p. After the wave is completed, the second
repetitive signal, associated with steps p to 2p
in the wave, is the desired repetitive control
signal, since it applies when the system is on
the desired trajectory at the start of the period.
This signal is then used for all repetitions, after
time 830 sec. The result is a very significant
improvement in the tracking error, as shown
in the figure.
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Figure. 4 Error histories using the modified

indirect decentralized repetitive control on the
polar coordinate robot executing the trajectories
in Figure. 1, with the time period tp-2 sec.

Subsystem 2 is shown.

In Figure. 4 we modify the repetitive control
algorithm in order to get closer to zero tracking

error sooner. Once the wave of learning has

progressed through p time steps, we have a

repetitive control signal that give close to zero
tracking error for a repetition, provided that
repetition  starts with the initial conditions
produced by the feedback control law. The
modification used here is to let the wave of
learning progress for two more time steps, from
p to p+2, in order to adjust these first time
steps of the learning to ones appropriate to the
initial conditions produced by the desired
trajectory. We can adjust the repetitive control
signal to include these two adjusted points.
Although this adjusted signal is not guaranteed
to give zero emror, it should be significantly
better than the feedback signal. In Figure. 4,
the period of the repetitive command is
changed to 2 sec, and the sample time for the
learning is 0.2 sec. From 80 to 82 sec is the
final feedback only repetition, preceding the
completion of learning of p steps in repetition
42, 82 to 84 sec. The control actions for 80
to 84 are repeated for 84 to 88 sec in order
to establish appropriate zero differences. From
88 to 90 sec, the previously leamned C)(1)8,(0)
is used to adjust the first time step, and the
resulting data is used to improve this time step
at 92.2 sec. At 102 sec the wave of learning
p+2 steps is complete. The repetitive control
signal with the first two time steps modified
is used from 102 to 110 sec, and is seen to
produce small error, and to do so much sooner
than when using the previous algorithm.
However, the learning is not yet completed,

the wave of learning must continue. We use
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this improved signal in the repetitions that
previously used feedback only. Thus, it is as
il we are starting the learning process from the
beginning, except that this time we are starting
with much less error. Therefore, we will in
theory need to progress to 3p before the
learning process is complete, We obtained
small error sooner, but at the expense of

extending the learning process.

6. CONCLUDING REMARKS

In this paper, centralized indirect repetitive
control laws are developed based on indirect
adaptive conirol concepts, and these laws can
be applied to time varying linear systems with
periedic coefficients, and with repetitive distur-
bances. Thus, they can apply to robot tracking
problems when the robot can be modeled as
linearized about the desired trajectory. The
requirement that the full state be measured that
appeared in a previous repetitive control
algorithm was eliminated. Then, assuming that
w2 know an upper bound on the amount of
time needed for transients to decay in the
system, a decentralized indirect repetitive con-
trol law was developed which has guaranteed
convergence to zere tracking error in such time
varying systems. It is seen that because of the
need to allow repetitions in which no learning
is done, in order to allow transients to decay,
it takes longer for convergence to zero tracking
error in the decentralized indirect repetitive

centrol  problem  than in the decentralized

indirect learning control problem.
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