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Dual-permeability Fractal Model of Groundwater
Flow in Fissured Aquifers

Pascal Bidaux* and Se-Yeong Hamm**

ABSTRACT : A dual-permeability fractal model of fluid flow is proposed. The model simulates groundwater flow in fis-
sured dual aquifer system composed of Aquifer 1 and Aquifer 2. For this model, groundwater flow originates only from A-
quifer 1 on the pumping well. The model considers wellbore storage and skin effects at the pumping well and then shows ex-
act drawdown at the early time of pumping. Type curves for different flow dimensions and for two cases are presented and
analyzed. The case 1 represents the aquifer system which consists of Aquifer 1 with low permeability and high specific
storage and Aquifer 2 with high permeability and low specific storage. The case 2 is inverse to the case 1. Dimensionless
drawdown curves in Aquifer 1 and Aquifer 2 shows characteristic trend each other. Consequently, the model will be useful
to analyze pumping test data of different drawdown patterns on the pumping well and observation wells.

INTRODUCTION

Several theories of groundwater flow in fractured
rocks have been developed since 1960's (Barenblatt
et al, 1960; Warren, Root, 1963; Kazemi, 1969;
Boulton, Streltsova, 1977; Jenkins, Prentice, 1982;
Cinco-Ley, Samaniego-V., 1981). All the models
mentioned above are based on a Cartesian descrip-
tion of the reservoir and hence integral flow dimen-
sions. So, all of them can not treat exactly physical
properties of flow in fractured rocks because of their
limitation to integral flow dimensions.

It is recognized that flow in fissured rocks is
controlled by the fissure network which often has a
fractal geometry (Allégre et al., 1982; Thomas, 1987;
Velde et al, 1991). The principal idea of fractal
theory is that a phenomenon may be repeated in the
same way at different scales. Consequently, the
measure of this phenomenon increases as a non-
integral power of scale. Groundwater flow analysis
by fractal theory has been introduced by Barker
(1988) and Chang, Yortsos (1988), who defined the
concept of non-integral flow dimension. Hamm,
Bidaux (1994a) proposed a fractal theory with
leakage from aquitard, that generalize Hantush's
equation (1956). Hamm, Bidaux (1994b) also pro-
posed the dual-porosity fractal model of steady-state
flow which generalizes Warren-Root model (1963).
Acuna, Yortsos (1995) applied fractal networks of
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fractures for numerical simulation of unsteady single-
phase flow. Hamm, Bidaux (1996) proposed dual-
porosity fractal model of transient flow in fractured
media with fracture skin between fissures and matrix
blocks and their relation with steady-state dual-po-
rosity fractal model.

Limitations in these fractal models appear when
drawdown response is much different between on the
pumping well and on the observation well. The
phenomenon indicates the flow system of several
fracture sub-networks (that is, several fractured me-
dia) having distinct hydraulic properties. Hence, we
propose a dual-permeability model of fluid flow in
two superposed fractured aquifers (Aquifer 1 and
Aquifer 2). As a consequence of a hierarchy in
fracture apertures, hydraulic connections between the
fractured media may be limited. Narrow fissures that
link the fractured aquifers would play a role that is
somewhat similar to that of semi-pervious layers.
Hence, except for the fractal geometry, such a
reservoir may behave like a multi-layered system in
Euclidean geometry. The model considers wellbore
storage and skin effects at the pumped well, and can
be easily utilized for the multi-well and multi-rate
pumping system composed of several pumping and
observation wells.

THEORY

The main assumptions of the model is as follows:

Flow is radial, n-dimensional and it converges
towards a single source of radius r,, pumped at a
constant rate Q.
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The reservoir consists of two overlapping, con-
fined, homogeneous and isotropic fractured media of
infinite extent in the radial direction which are
referred as Aquifer 1 (the lower aquifer) and Aquifer
2 (the upper aquifer). Within Aquifer 1 and Aquifer
2, fluid flow obeys Darcy's law and fluid storage is
elastic. Aquifer i is characterized by a hydraulic
conductivity K;, specific storage S, and transverse
extent b, At any radial distance r from the source
and at any time t, drawdown s, in Aquifer 1 and s,
in Aquifer 2 may be different.

The source only penetrates Aquifer 1. It is cha-
racterized by a wellbore storage constant W, and
skin factor s;. Darcy's law is applied to the exchange
of fluid between Aquifer 1 and the source.

Darcy's law is applied to the exchange of fluid by
formation crossflow between Aquifer 1 and Aquifer
2. Formation crossflow is characterized by the in-
terface semi-permeability coefficient, .

Any piezometers indicate the local drawdown in
either Aquifer 1 or Aquifer 2, but do not induce
hydraulic short circuits between both aquifers.

Following Barker (1988), let us express the
volumes of fluid AV, and AV,, released by Aquifer 1
and Aquifer 2, respectively, during a small period At,
in the region between the equipotential surfaces
which have radii r and r+Ar, where Ar is small:

AV, =S¢ b ar-1ArAs, (1)
AV, = Sg,bF "ar-1ArA, )

in which As, and As, denote the drawdown change
in Aquifer 1 and Aquifer 2, respectively; and «, is
the area of a unit sphere in n dimensions and is
expressed as:

O = 27/ T(0/2) 3)

where I'(x) is the Gamma function.

The net volumetric flow rates out from the shell,
for Aquifer 1 and Aquifer 2, respectively, are expres-
sed as

q; =K;bj e
r
Bt 4
. ol @

ds,
(I'+ Ar)“‘la—(r + Ar, t) —rn-1
T
qp = Kb "om

s, <
20| ©

0
(r+Ary+! %—(r +Ar, t)—r-1
r

From Darcy's law, the algebraic crossflow rate g,

from Aquifer 1 to Aquifer 2, inside the shell, is
proportional to 3 (L"T"), to the contact area at the
interface between Aquifer 1 and Aquifer 2, and to
the local difference between drawdowns in Aquifer 1
and Aquifer 2. It is given by

q, = x(onr™1Ar) (s, —s,) (6)

Fluid conservation equations for Aquifer 1 and
Aquifer 2 in the shell are:

AV, =(q; —q At 7
AV, =(q, +q)At ®)

from which the frow equations in the reservoir are
obtained by taking limits:

RELN VPR ©
or

122 | -5 (10)
or

The existence of formation crossflow induces a
linear coupling between flow equations in Aquifer 1
and Aquifer 2. Hence, equations (9) and (10) cannot
be solved separately.

Let s, be the drawdown at the source. As the
source only penetrates Aquifer 1, we have:

ﬁ — 3-nn 0-1 ﬁ
Wi o =Q+Kp "oy p (11)

I=r,

w

in which W, is the wellbore storage constant of the
source; i. e., the volume of fluid stored or released
for unit change of drawdown. We also have a
singular head loss at the entry of the source; by
definition of the skin factor:

s,
Sw(t) = 81(tw, t)—Sgw| —

or (12

r=r,

w

Aquifer 2 is not penetrated by the source; hence, r
= 1,, behaves like a no-flow boundary for Aquifer 2:

ds,

% | " 0 (13)

w
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The system is initially at rest:
sw(I, 0) =58,(1,0) =84(r,0) =0 (14)

In addition, the reservoir has an infinite radial
extent:

5100, 1) = 8,(e0, )= 0 (15)

Let us
variables:

4(K,bi ™ + Kb )

define the following dimensionless

(16)

7 rSabi+S b
Ip =1/Tw (17)
47K b0 + K b3
Sip = 5
Qri®
(i=1(Aquifer 1), 2 (Aquifer 2), w) (18)
Wi
W= - 19
O Sy ) ©
Sslblzin
o= 3-n 3n (20)
Subi™ +8;bs
K= —— @1
K b3+ K,b3™
2
. S— )
K,bj " +K;b3
Equations (9) through (13) become:
L i rn-1 aS]D
i arp | P arp
Sip
40—=—+Msyp—Sp) (23)
atp
1- Ki rn-1 aszD =
-l ooy | P arp
98,p
41-o)==2 +/1(s2D—le) (24)
oty
98y K 91p
—P _ 1+ 25
D a3ty 2IM2) | ory ()
_ 9s1p
Swpltp) = s1p(1, tp)—s 3 (26)
n

r =1
D

9syp

Jrp

=0 @7

rn=l

Applying dimensionless Laplace transform to those
equations, we obtain:

K i n—1 d_ng
]'Ir)l_l er D er
=4aps;p+A(S1p=Syp) (28)

1-x d | . 9m
— D — =

ol dry drp,
4(1 - @)psp+ ASyp—S1p) (29
— 1 K ds;p
W, =—+ 30
p aDSwD p ZI_(H/Z,) er r ( )
_ _ ds;p
Sun(®) =Sip(L, P) =5 — (1)
D r= 1
ds
—2 1 _p (32)
drp,

r =1
D

in which p is Laplace variable. We now try to find
auxiliary variables which would allow a de-coupling
of Eqgs. (28) and (29). Those can be rearranged as

Vi d

-1 dr,

4“’5{‘<&€1D)—ﬁ(vl—x§m) (33)

40k s p)

b drp,

1-x d

- D
-l dry drp,

“]—J“T”jﬂm K S)- %(&Eu» (34)

The differential system above can be written in ma-
trix from:

1 d(V1 =K sp) _

1 d dX

—|ra?
rp-1 drp drp,

=W X (35)

with
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X = ig_m_ (36)
VI-ksyp
and
4dap+A A
K V(1-K)
W=l A 4a-op+a (37)
Vi-m 1k

For any value of p, the matrix W is symmetric,
definite, positive. Hence, it is possible to diagonalize
W: i, ¢., to find an orthogonal matrix (a rotation) :

cosf —sinf
Ro=|sing coso (38)
and a diagonal matrix with strictly positive
coefficients:
ol 0
2
z |0 of (39)
such that
W=R__9'22'R9 (40)

Substituting (40) to (35) makes:

1 d dX
?ﬁa 1’_1? :R_Q'ZZ'RQ-X (41)
D D

Multiplying both sides by Re, we obtain:

1 d [, ,dX
— |1/ | =

- D
ol drp drp,

32U (42)

in which we have defined

Uy
U= u, =Ry X=

VK $,pc080—V1 — K s,psin0

- - 43
Vi s psin@+V1 - k s,pcos #3)

Eqs. (28) and (29) have finally been replaced by
the following equivalent de-coupled form :

1 d du,
= |l | =2 44
r]';“l drp 'p drp, 1t (44)

1 d rn—l& -o2u (45)
1 d 3+ Uy
I'D Ip

by using the new independent variables u; and u,.
Those obey equations who have the same form that
the equation governing hydraulic head distribution in
Laplace domain for Barker's model. Hence, the
general solution for u; and u, is:

u; =A¥K, (o1p) (46)

u, = AyrpK, (Oo1p) @7
in which

v=1-n2 (48)

and Ku) is modified Bessel function of second
kind and order v.

Inverting (43) to express s, and S, as functions
of u; and u,, and substituting from (46) and (47), we
obtain the general solution for the dimensionless
drawdowns in Aquifer 1 and Aquifer 2 :

- AK,(oyrp)cos0+AgriK, (051p)sin€

Sip= NP (49)
- —A K, (01p)sin8+ AgryK, (0yrp)c0s0 (50)
Sp =

Nl-x

Taking the derivatives of (49) and (50), and (52),
the values of the source (rp=1) are obtained:

9s1p
arD r =1
-A,0,K,_(0y)cos8—-A,0,K,,_(0,)sinf
G
Vx
98,1
o | _ . B
A,0K,_(0))sin6-A,0,K,,_,(0,)cosd
(52)
Vi-K

Using (49), (51) and (52), equations (30), (31),
and (32) can be written as

- 1 Vx
W S,p = — —
PWspSwp P 2Mn2)
[A,0.K,_(0))cos8+A,0,K,_(0,)sinf] (53)

[A;K(0))cos0+ A,K, (0,)sin6]
SwD = +
Vx
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sl Ay(0)K - 1c0s0+A,0,K,,_1(0y)sinb]
(54)
Vi

which is , for any value of p, a regular linear system
with 3 equations and 3 unknown : s, and the two
integration constants, A, and A,. Solving this system
gives the solution for dimensionless drawdown at the
pumping well in Laplace domain :

- 1 K
Swp = p (pWSD-i- 21_(110,)

1
KY_(0))cos?8+K)_,(0%)sin®0+s;

(56)

where K)_1(z) = K (2)/(zK,_1(2))

For piezometers, rather than taking the full expre-
ssion of A, and A, we eliminate s,p, from (53) by
setting wellbore storage to zero, and we solve the
simplified system ((53) and (55)) for A; and A,. Su-
bstituting their values in (49) and (50) and rearranging
(49) and (50), we finally get dimensionless drawdowns,
in Laplace domain, at an observation well in Aquifer 1
and Aquifer 2, s, and s,p, respectively :

Sip= 2"y [K\(Cﬂrp)COSZO N KV(GZID)SinZB] 57)

pK oy oy
_ 21vr¥sin@cosB | K{oor,)  K((oyrp) (58)
S)p = _

P opk-n | @ of
where,
r q12

m; +m,+ (ml - mz)m

o= (59)
2
r Q12

m1+m2—(m1—m2)vl +12

%= (60)
2
)
2
cosf = .@ (61)
2V1+12
12
2_
sing= | YLtt-1 ©)
2N1+1t2
{= 2n )
my—m,

m]:““”;;’1 (64)

m, = 4(1—1a_);’)<)+/1 (65)
A

= 66

" Ve(1-1) (%)

In order to compute drawdowns as a function of
time in the general case, we used a pakage developed
by Amos (1986) to evaluate modified Bessel functions
and Stehfest algorithm (1970) to invert Laplace
transforms.

TYPE CURVES

We plotted several type curves for two cases: the
case 1 (K/Sy=2 m’s”, K,/S;,=0.002 m’s™ and S,/S=
10) and the case 2 (K,/S,;=0.002 m’s”, Ky/S,;=2 m’s’
and S,,/Sy;=0.1). Fig. 1 and Fig. 2 present the case 1,
and Fig. 3 and Fig. 4 present the case 2. Fig. 1 (a) to
(f) show logarithmic dimensionless drawdown (S.p)
versus logarithmic ~dimensionless time(tp/ry’) of,
respectively, n = 0.5, 1, 1.5, 2, 2.5 and 3 at the
pumping well. Similar to dual-porosity fractal model
of steady-state flow (Hamm, Bidaux, 1994b), one
can distinguish three parts of the curves except flow
dimensions above 2. The first part of the curves
shows the effect of wellbore storage followed by
influence of flow in Aquifer 1. The second part (the
transition zone) shows progressive contribution from
Aquifer 2. Finally, The third part shows the behavior
of homogenous combination of Aquifer 1 and Aqui-
fer 2. If the value of A is large, the second part
begins before disappearance of wellbore storage
effect. Contrarily, when the value of A is small, the
second part begins much late. In that case, one risks
to confuse the fractal model of dual-permeability
with Baker's model. Any type curves of greater than
flow dimension 2 appear almost the same
regardlessly the values of A, stabilizing next to the
wellbore storage effect.

Solid lines of Fig. 2(a) to (f) show logarithmic
dimensionless drawdown (le/rDZ'“) versus logarithmic
dimensionless time(ty/n,’) of, respectively, n=0.5, 1, 1.5,
2, 25 and 3 at an observation well in Aquifer 1 for
case 1. For the case of Aquifer 1, similar to dual-
porosity fractal model of steady-state flow (Hamm,
Bidaux, 1994b), one can distinguish three parts of the
curves: the first part of the curves presents flow from
Aquifer 1; the second part (the transition zone) shows
progressive contribution from Aquifer 2; the third part
shows the behavior of homogenous total system of
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Fig. 1. Dimensionless drawdown curves at the production well in Aquifer 1 with different values of A and various flow di-

mensions (Ws=0.03, S;=0, xk=0.99 and ®=0.091).

both Aquifer 1 and Aquifer 2. The larger the value of
A, the smaller the drawdown.

Broken lines of Fig. 2 (a) to (f) show logarithmic
dimensionless drawdown (sy,/rp"") versus logarithmic
dimensionless time(tD/rDZ) of, respectively, n=0.5, 1, 1.5,
2, 2.5 and 3 at an observation well in Aquifer 2. One
can divide three parts on the lines: the first part nearly
shows straight line; the second part (the transition zone)
less distinctive than that of Aquifer 1 and does not
show the stabilization; the third part shows the be-
havior of homogenous total system of both Aquifer 1
and Aquifer 2 and the curves of Aquifer 1 and Aquifer
2 join together. Contrarily to the case of the obser-
vation well in Aquifer 1, the smaller the value of A,
the smaller the drawdown. As the value of A is large,
the curve follows the behavior of homogenous total
system fast. For the same values of A, the drawdown
is becoming smaller with increasing the flow di-
mension.

Fig. 3 (a) to (f) show logarithmic dimensionless
drawdown (s,p) versus logarithmic dimensionless
time(tp/rp’) of, respectively, n=0.5, 1, 1.5, 2, 2.5 and
3 at the pumping well for case 2. In almost all of
flow dimensions except dimension 1, one can only
distinguish two parts of the curves because of long
period of transition zone. The first part of the curves
shows the effect of wellbore storage followed by
influence of flow in Aquifer 1. The second part (the
transition zone) shows important contribution from
Aquifer 2 with stabilization. The larger the value of
A, the smaller the drawdown.

Solid lines of Fig. 4(a) to (f) illustrate logarithmic
dimensionless drawdown (s,p/tp"") versus logarithmic
dimensionless time(tn/rpz) of, respectively, n=0.5, 1, 1.5,
2, 25 and 3 at an observation well in Aquifer 1 for
case 2. In almost all of flow dimensions, similar to Fig.
3, one can only distinguish two parts of the curves
because of long period of transition zone. The first part
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Fig. 2. Dimensionless drawdown curves at the observation wells in Aquifer 1 and Aquifer 2 with different values of A and

various flow dimensions (k=0.99 and ©=0.091).

of the curves shows the influence of flow in Aquifer 1.
The second part (the transition zone) shows important
contribution from Aquifer 2 with stabilization. The
smaller the value of A, the smaller the drawdown, at
early time, but the smaller the value of A, the larger

the drawdown, at late time. Broken lines of Fig. 4 (a)
to (f) show logarithmic dimensionless drawdown (s,p/
rp"") versus logarithmic dimensionless time(ty/r,’) of,
respectively, n=0.5, 1, 1.5, 2, 2.5 and 3 at an obser-
vation well in Aquifer 2 for case 2, and are exactly the
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Fig. 3. Dimensionless drawdown curves at the production well in Aquifer 1 with different values of A and various flow di-

mensions (Ws=0.03, Sz=0, k=9.9E-3 and ®=0.91).

same those of Fig. 2. The larger the dimension of flow
and the smaller the value of A, the larger the
differrence between the drawdown in Aquifer 1 and
Agquifer 2 at late time.

CONCLUSION

A dual-permeability model of fluid flow in two
superposed fractured aquifers (Aquifer 1 and Aquifer
2) was developed. The model considers wellbore
storage and skin effects at the pumped well, and can
be easily utilized for the multi-well and multi-rate
pumping system composed of several pumping and

observation wells. The model can be used when
drawdown response is much different between on the
pumping well and on the observation well. The
phenomenon indicates the flow system of several fra-
cture sub-networks having distinct hydraulic
properties, that is, several fractured aquifers super-
posed. The fractal models already proposed (Barker,
1988; Chang, Yortsos, 1988; Hamm, Bidaux, 1994a,
1994b, 1996) are not suitable to analyze such data.
Several type curves for two cases - the case 1 (Ky/
S, =2m’”, Ky/S,=0.002 m’s” and S,,/S,=10) and
the case 2 (Ki/S,;=0.002 m’s”, Ky/S,,=2 m’s” and S,/
Sq =0.1)-show characteristic forms of their own.



Dual-permeability Fractal Model of Groundwater Flow in Fissured Aquifers 441

1E+5

®n=0§
—— Aquiter 1
- -~ Aquifer2

1E+4

1E+3

1E+2

1E+1

1E+0

Dimensioniess Drawdown

1E-1

1E-2

11IHII[| IH|||ITI |||Hll|l |IHHHI Il”llll] |||IIIII’I lllllllT' L

1E-3 .
1E-1 1E+0 1E+1 1E+2 1E+3 1E+4 1E+5 1E+8 1E+7

1E+3
)n=15

Aquifer1
- -~ Aguifer2

1E+2

1E+1

1E+0

1E41

Dimensioniess Drawdown

1E-2

llllh!l] IIIHIN] IIHHTI( IHT]I'"'[ IIIIH'IVI T T

b

1E-3
1E-1 1E+0 1E+1 1E+2 1E+3 1E+4 1E+5 1E+8 1E+7

1E+2

[ @ne=2s

1E+1 Acuker 1

~—— Adquifor 2

1E+0

1E-1

1E-2

Dimensionless Drawdown

1E-3

lﬂmﬂ[ IUIHH! V|||I|H’ ITITI\TI'{ YTHTI'I‘I

1E4
1E-2  1E-1 1E+0 1E+1 1E+2 1E+3 1E+4 1E+5 1E+6

Dimensionless Time

1E+4

®)n=10

——  Aquifer 1
—— = Aduifer2

1E+3 ¢

1E+2

1E+1

1E+0

1E-1

1E-2

1E-3 &5

lHIIIlI[ NN

1E4 b ;
162 1E1 1EsD 1E+1 1Es2 1E+3 1E+4 1E+5 1646

1E+3

@n=20

—— Aquifer 1
— -~ Adquifer2

1E+2

1E+1

1E+0

1€41

1E-2

lllll(l‘ IHlIlI.I’ li'LlllIl AHIH[Il Illllllli 14110

:

1E-3 ool el vl gl ol 1
1E-1 1E+0 1E+1 1E+2 1E+3 1E+4 1E+5 1E+8 1E+7

1E+2

1E+1

1E+0

1E-1

1E-2

1E-3

T ”Hllll T lllHH’l T l.l“ll[ ITIHTI'I', T HHV"‘ T3 T

1E4 .
1E-1 1E+0 1E+1 1E+2 1E43 1E+4 1E+5 1E+68 1E+7

Dimensionless Time

Fig. 4. Dimensiconless drawdown curves at the observation wells in Aquifer 1 and Aquifer 2 with different values of A

and various flow dimensions (k=9.9E-3 and ©=0.91).

For the case 1, dimensionless drawdown curves of,
res- pectively, n=0.5, 1, 1.5, 2, 2.5 and 3 at the
pumping well (Fig. 1) and the observation well in
Agquifer 1 (solid lines in Fig. 2) are similar to dual-
porosity fractal model of steady-state flow (Hamm
and Bidaux, 1994b). Before crossflow, flow occurs
in Aquifer 1 alone without any influence in Aquifer
2. After crossflow, flow occurs in an equivalent me-

dium that behaves like a homogenous combination
of Aquifer 1 and Aquifer 2, with additional skin due
to the effect of restricted entry because the source
penetrates Aquifer 1 only. The straight part of the
slope 1 on dimensionless curves for the pumping
well (Fig. 1) represents the wellbore storage and the
well loss. The smaller the value of A, the larger the
drawdown. Contrarily to the case of the observation
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well in Aquifer 1, dimensionless drawdown at the
observation well in Aquifer 2 (Broken lines of Fig. 2)
is small when the value of A is small.

For the case 2, The drawdown pattern of, respec-
tively, n=0.5, 1, 1.5, 2, 2.5 and 3 at the pumping well
(Fig. 3) and the observation well in Aquifer 1(solid
lines in Fig. 4) are different each other. The drawdown
at the pumping well is small with increasing the value
of A. On the other hand, the drawdown at the
observation well in Aquifer 1 is smaller with smaller
value of A at early time, but larger at late time. The
drawdown curves at the observation well in Aquifer 2
for the case 2 (Broken lines of Fig. 4) is exactly the
same with those of the case 1.
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