References
- Bendsoe M.P. and Kikuchi, N. (1988), "Generating optimal topologies in structural design using a homogenization method", Comp. Meth. Appl. Mech. Eng., 71, 197-224. https://doi.org/10.1016/0045-7825(88)90086-2
- Bendsoe, M.P. and Mota Soares, C.A. (1993), Topology Design of Structures, Kluwer, Dordrecht.
- Diaz, A. and Kikuchi, N. (1992), "Solutions to shape and topology eigenvalue optimization problems using a homogenization method", Int. J. Num. Meth. Eng., 35, 1487-1502. https://doi.org/10.1002/nme.1620350707
- Guedes, J.M. and Kikuchi, N. (1990), "Preprocessing and postprocessing for materials based on the homogenization method with adaptive finite elements methods", Comp. Meth. Appl. Mech. Eng., 83, 143-198. https://doi.org/10.1016/0045-7825(90)90148-F
- Haftka, R.T. and Gurdal, Z. (1992), Elements of Structural Optimization, Kluwer, Dordrecht.
- Hughes, T.J.R. (1987), The Finite Element Method, Prentice-Hall, Englewood Cliffs, NJ.
- Kamat, M.P., Khot, N.S. and Venkayya, V.B. (1984), "Optimization of shallow trusses against limit point instability", AIAA J., 22, 403-408. https://doi.org/10.2514/3.48461
- Khot, N.S., Venkayya, V.B. and Berke, L. (1976), "Optimum structural design with stability con-straints", Int. J. Num. Meth. Eng., 10, 1097-1114. https://doi.org/10.1002/nme.1620100510
- Ma, Z.-D., Kikuchi, N., Cheng, H.-C. and Hagiwara, I. (1995), "Topological optimization technique for free vibration problems", J. of Appl. Mech., 62, 200-207. https://doi.org/10.1115/1.2895903
- Mayer, R.R., Kikuchi, N. and Scott, R.A. (1996), "Application of topological optimization tech-niques to structural crashworthiness", Int. J. Num. Meth. Eng., 39, 1383-1403. https://doi.org/10.1002/(SICI)1097-0207(19960430)39:8<1383::AID-NME909>3.0.CO;2-3
- Neves, M.M., Rodrigues, H. and Guedes, J.M. (1995), "Generalized topology design of structures with a buckling load criterion", Struct. Optim., 10, 71-18. https://doi.org/10.1007/BF01743533
- Pedersen, P. (1989), "On optimal orientation of orthotropic materials", Struct. Optim., 1, 101-106. https://doi.org/10.1007/BF01637666
- Suzuki, K. and Kikuchi, N. (1991), "A homogenization method for shape and topology optimization", Comp. Meth. Appl. Mech. Eng., 83, 143-198.
- Zienkiewicz, O.C. and Taylor, R.L. (1989), The Finite Element Method, McGraw-Hill, London.
Cited by
- A performance-based optimization method for topology design of continuum structures with mean compliance constraints vol.191, pp.13-14, 2002, https://doi.org/10.1016/S0045-7825(01)00333-4
- On compliance and buckling objective functions in topology optimization of snap-through problems vol.47, pp.3, 2013, https://doi.org/10.1007/s00158-012-0832-2
- Optimal structural design considering flexibility vol.190, pp.34, 2001, https://doi.org/10.1016/S0045-7825(00)00329-7
- Integrated Discrete/Continuum Topology Optimization Framework for Stiffness or Global Stability of High-Rise Buildings vol.141, pp.8, 2015, https://doi.org/10.1061/(ASCE)ST.1943-541X.0001164
- A review on structural enhancement and repair using piezoelectric materials and shape memory alloys vol.21, pp.1, 2012, https://doi.org/10.1088/0964-1726/21/1/013001
- Minimal compliance topologies for maximal buckling load of columns vol.51, pp.5, 2015, https://doi.org/10.1007/s00158-014-1202-z
- A simple alternative formulation for structural optimisation with dynamic and buckling objectives vol.55, pp.3, 2017, https://doi.org/10.1007/s00158-016-1544-9
- Topology optimization of continuum structures under buckling constraints vol.157, 2015, https://doi.org/10.1016/j.compstruc.2015.05.020
- An Adaptive Continuation Method for Topology Optimization of Continuum Structures Considering Buckling Constraints vol.09, pp.07, 2017, https://doi.org/10.1142/S1758825117500922
- Elimination of the Effects of Low Density Elements in Topology Optimization of Buckling Structures vol.13, pp.06, 2016, https://doi.org/10.1142/S0219876216500419
- Linear buckling topology optimization of reinforced thin-walled structures considering uncertain geometrical imperfections vol.62, pp.6, 2020, https://doi.org/10.1007/s00158-020-02738-6