DOI QR코드

DOI QR Code

An analytical approach for nonlinear response of elastic cable under complex loads

  • Lu, L.Y. (Department of Civil and Structural Engineering, Hong Kong Polytechnic University) ;
  • Chan, S.L. (Department of Civil and Structural Engineering, Hong Kong Polytechnic University) ;
  • Lu, Z.H. (Nanjing Architectural and Civil Engineering Institute)
  • Published : 1997.05.25

Abstract

In this paper a general analytical approach is proposed to analyse the nonlinear response of elastic cable under complex loads. The effect of temperature change on the cable is also considered. From the vertical equilibrium equations of cable, the general analytical formula of vertical displacement is derived. Based on the vertical displacement formula and on the compatibility condition of the cable, the dimensionless equation with respect to cable tension is established. By means of such analytical procedures, the exact solutions of various cable problems can be obtained quickly. The example given in this paper shows that the new procedure is efficient for practical analysis and can be easily implemented by a general computer program without the superposition problem which there has always been in traditional analytical methods.

Keywords

References

  1. Argyris, J.H. and Scharpf, D.W. (1972), "Large deflection analysis of prestressed networks", J. Struct. Div. Proc. ASCE, 98, 633-654.
  2. Bruce, J.J. and Robert, J.W. (1978), "Nonlinear cable behavior", J. Struct, Div., Proc. ASCE, 104, 567-575.
  3. Buchholdt, H.A. (1970), "Tension structures", Structural Engineer, 48(2), 45-54.
  4. Desai, Y.M., Popplewell, N., Shan, A.H. and Buragohain, D.N. (1988), "Geometric nonlinear static analysis of cable supported structures", Comput. Struct, 29, 1001-1009. https://doi.org/10.1016/0045-7949(88)90326-4
  5. Francis, A.J. (1965), "Analysis of suspension cable behaviour", The Engineer, 1094-1101.
  6. Gambhir, M.L. and Batchelor, B. (1977), "A finite element for 3-D prestressed cablenets", Int. J. Num. Meth Engng., 11.
  7. Gambhir, M.L. and deV. Batchelor B. (1986), "Finite element for cable analysis", Int. J. Struct., 6, 17-34.
  8. Irvine, H.M. (1975), "Statics of suspended cable", J. Engng. Mech. Div., Proc. ASCE, 101, 187-205.
  9. Irvine, H.M. (1981), Cable Structures, The MIT Press, Cambridge.
  10. Judd, B.J. and Wheen, R.J. (1978), "Nonlinear cable behaviour", J. Struct. Div., Proc. ASCE, 104, 567-575.
  11. Jayaraman, H.B. and Knudson, W.C. (1981), "A curved element for the analysis of cable structures", Comput. Struct., 14, 325-333. https://doi.org/10.1016/0045-7949(81)90016-X
  12. Krishna, P. (1978), Cable-Suspended Roofs, McGraw-Hill, New York.
  13. Leonard, J.W. and Recker, W.W. (1972), "Nonlinear dynamics of cable with initial tension", J. Engng. Mech. Div., Proc. ASCE, 96, 1023-1059.
  14. Leonard, J.W. (1973), "Dynamics of curved cable elements", J. Engng. Mech. Div., Proc. ASCE, 99, 104-125.
  15. Leonard, J.W. (1988), Tension Structures, McGraw-Hill Book Company, New York.
  16. Lu, L.Y. (1994), On Some Problems in Non-linear Vibrations, Ph. D. Dissertation, Univ. of Sci. and Tech. of China (USTC).
  17. Markland, E., (1951), "The deflection of a cable due to a single point load", philosophical Magazine, 42(332), 990-996. https://doi.org/10.1080/14786445108561343
  18. Morales, R.C. (1968), "Shear-volume method of solving tensions in cables", J. Struct. Div., Proc. ASCE, 94, 2281-2302.
  19. O'Brien, W.T. (1968), "Behaviour of loaded cable systems", J. Struct. Div., Proc. ASCE, 94, 2281-2302.
  20. Otto, F. (1967), Tension Structures, Vols. I and II, MIT Press, Cambridge.
  21. Ozdemir, H. (1979), "A finite approach for cable problems", Int. J. Solids Struct., 15, 427-437. https://doi.org/10.1016/0020-7683(79)90063-5
  22. Peyrot, A.H. and Goulois, A.M. (1979), "Analysis of cable structures", Comput. Struct., 10, 805-813. https://doi.org/10.1016/0045-7949(79)90044-0
  23. Pippard, A.J.S. and Chitty, L. (1942), The stresses in an extensible cable, Journal of the Institution of Civil Engineering, 18, pp.322-333.
  24. Pugsley, A.G. (1957), The Theory of Suspension Bridges, Edward Arnold, London, England.
  25. Tuah, H. and Leonard, J.W. (1990), "Dynamic response of viscoelastic cable elements", Ocean Engng.(GB), 17, 23-34. https://doi.org/10.1016/0029-8018(90)90012-U
  26. Tuah, H. and Leonard, J.W. (1992), "Strumming of nonlinear cable elements using model superposition", Eng. Struct. (GB), 14, 282-290. https://doi.org/10.1016/0141-0296(92)90041-N
  27. West, H.H. and Kar, A.K. (1973), "Discretized initial value analysis of cable nets", Int. J. Solids Struct., 9, 1403-1420. https://doi.org/10.1016/0020-7683(73)90048-6
  28. Wilson, A.J. and Wheen, R.J. (1977), "Inclined cables under load-design expressions", J. Struct. Div. Proc. ASCE, 103, 1061-1078.

Cited by

  1. SECOND-ORDER ANALYSIS AND DESIGN OF CABLES AND CABLE-FRAMES vol.05, pp.04, 2005, https://doi.org/10.1142/S0219455405001696