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1. Item Response Theory

Let @ be the trait (ability, skill, etc.) to be measured. For dichotomous item
(scored 0 or 1), the item response function is the probability P or P(f) of a
correct response to the item. It is assumed that P(f) increases as 8 increases. A
commonly assumed model for this probability can be the (three-parameter) logistic

function
1—¢

1+ exp{-1.7a(6 — b)}

where @ is called the item discrimination parameter, b the difficulty parameter,

P=P@)=c+

and c the guessing parameter, respectively.

It is also assumed that probability of success on an item depends only on three
itern parameters and ability 8, referring to the assumption of local independence
(LI). Let X; = 0 or 1 be the score on item %, then LI can be written as

n
PXi=1.,X,=1]|6)= HP(X,' | 8)
i=1
where n is the length of the test (see Lord (1980) for details). Strictly test dimen-
sionality is defined to be the dimensionality of the vector # holding LI. In practice,

however, the notion of essential dimensionality of Stout (1990) is acceptable in-

stead.
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2. A Dimensionality Structure Analysis

Definition of DETECT

Suppose {X;;1 <1 < n}is a test of n items. Suppose A;, As,..., A, are all non-
empty subsets of the test {X;}, AsNA4;j=0forall1<i<j<r,and ;4=
{X:}. Then, P = {Ay, Ag,..., A} is called a r-subset (r-cluster) partition of the
test.

For an item pair (Xj, X;), define a weighted sum of conditional covariance
estimates of X; and X; as

n—-2

— 1 —
Covij = = )" qCou(Xi, X;1Si; = k). (1)
k=0

Here S;; is the observed correct score on the (n — 2) remaining items except for
items ¢ and j, Ji is the number of examinees with score Sj; = k, and J is the total
number of examinees.

Let Q be the set of all pairs of item indices, i.e.,

Q={@4),1<i<j<n).
Note that © has n(n — 1)/2 elements.

The index DETECT is defined as

2 — .
DETECT(P) = Y — Z 8:j(Covy; — Cov), (2)
(1,5)eQ
where P is any specified r-subset (r-cluster) partition of the test, Cov is the average
of égvij over all n(n — 1)/2 item pairs, and

P 1  ifitems X; and X; are in the same cluster
Y —1 otherwise.

The index 4;; manipulates the (5-(;01-]- — Cov) term in (2), to be added or sub-
tracted according as items X; and X belong to the same cluster or not; when both
items belong to the same cluster the centered (it is centered at Cov) conditional
covariance estimate (C/o\v,-j — Cov) is added, while it is subtracted otherwise.
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As a function of P, DETECT can take on value ranging from negative to pos-
itive. One object here is to find one particular partition of the test mazimizing
DETECT. Maximum DETECT is expected when test is classified into dimension-
ally “correct” subsets.

Conditional Covariance

The total score (or the remaining total score) can be thought as (best) measuring
a linear composite @ of the two traits having weights determined primarily by the
influence of each trait; this linear composite is called the test composite. Thus
C/(;Uij is interpreted as an estimator of Cov(X;, X; | 8) for an appropriate level of
0 corresponding to the observed score S;; value.

When a test is strictly (or essentially) unidimensional, C’/;vij = 0 (or approxi-
mately zero) because local independence holds for unidimensional § approximately
estimated by S;;, except for statistical error caused by score unreliability and by
estimation noise. Thus, maximum DETECT value will also be expected to be zero
(or approximately zero) except for statistical error.

When a test is multidimensional and has simple structure, positive covariances
should be produced between items on the same cluster measuring one trait, while
negative covariances between items from different clusters except for statistical
error.

Recall from (2) that § makes the negative conditional covariances positive in
calculating DETECT when they are from between-cluster items. Therefore, except
for statistical error, DETECT can be expected to be maximized at the “correct”

cluster formation.

DETECT..;

Denote DETECT .z to be the maximum DETECT value calculated over all pos-
sible partitions of a test. According to the theoretical results of Kim (1994) and
Zhang (1996), it becomes clear that the main objective is to find a partition that
maximizes, or approximately maximizes, DETECT, because then one suspects
that this partition, except for statistical error, correctly indicates the underlying
multidimensional structure. The number of sizable clusters (that contain at least a
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certain number of items, say 4) in this partition that maximizes DETECT is judged
to be the number of dimensions present in the test, and the average direction of
the cluster that an item is located in corresponds to the dominant dimension the
item is (best) measuring. The minimal cluster size restriction helps prevent the
identification of dimensions having only a minor influence as well as helping reduce
the possibility of statistical noise being opportunistically yet incorrectly judged by
DETECT as contributing a (minor) dimension.

Since each estimated conditional covariance 50\11,-]- contributes to a measure of
the lack of unidimensionality resulting from violation of local independence (LI),
the size of DETECT . can be viewed as an indicator that quantifies the amount
of departure from unidimensionality. This amount of departure from unidimen-
sionality is interpreted as the magnitude of departure from the unidimensional
composile direction determined by a weighted average of all the underlying latent
dimensions, these dimensions represented by item clusters in the approximate sim-
ple structure case. This composite direction can be thought of intuitively as the
single dimension best measured by the test, somewhat like the psychologist’s g on
an intelligent test. DETECT .. is expected to be close to zero for unidimensional
data, while it reaches a substantially larger value for heavily multidimensional
data.

Unfortunately, for a finite-length unidimensional test, there exists statistical
bias in the index DETECT due to the lack of reliability of the conditioning scores
Sij, as recognized by Rosenbaum (1984), Holland & Rosenbaum (1986), Douglas,
Kim & Stout (1994) and Kim et al. (in press) among others. That is it can be
proposed under appropriate assumptions that

Cov(Xi, X;|Si;) >0, foralll<i<j<m.
Therefore,
E[Cov(X;, X;18:;)] >0, foralll<i<j<n.

Notice that

n—2
E[COU(X,, XJIS,J)] = ZPI‘Ob (Sij = k) CO’U(X,', Xj'Sij = k) (3)
k=0
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By comparing (1) and (3), we see that é;t’ij is a reasonable estimate of E[Cov(X;,
X;|Si;)]. Hence, the claimed statistical bias of the C/o\vij- and hence of DETECT
will occur. In order to correct this bias, the average Cov is subtracted from each
éo\’vij before it is combined into DETECT. This is why the (Cov; j— Cov) term is
used in (2) rather than C/'o\v,-j. Indeed, after this bias correction, as will be seen
later, DETECT,,,; remains small for unidimensional data as desired. Simulation
studies show that this correction, designed for the correction of the positive bias in
the unidimensional case, has no visible deleterious impact in the multidimensional
case. That is, as desired, DETECTp,,, remains large for strongly multidimensional
data while staying near zero for the unidimensional data.

Table 1 below roughly categorizes a suggested quantitative interpretation of the
amount of departure from unidimensionality, or the amount of multidimensionality,
which is indicated by the maximum DETECT value. It should be stressed that
the “amount” of multidimensionality is distinct from the number of dimensions; a
two-dimensional data set could display a large amount of multidimensionality if the
two dimensions are each well measured and are weakly correlated while an eight-
dimensional data set could display very weak multidimensionality if there is only
one dominant dimension and/or the multiple dimensions are highly correlated. In
Table 1, the DETECT value has been multiplied by 100 for convenience.

Table 1
A Categorization of DETECT,,,, as an Index
of Amount of Multidimensionality

DETECT ez Multidimensionality

0.0-0.19 unidimensional
0.2-0.39 weak
0.4-0.79 moderate
0.8 - strong

Theoretical justification of DETECT is developed by Zhang (1996) and it sup-
ports well the use of DETECT. Also it is essential to search for the meaningful
cluster formation which maximizes the DETECT, in fact requiring enormous com-
putation. Recently the Genetic Algorithm is adapted by Zhang (1996).
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3. Real and Simulated Data Analysis

Real Data Analysis

Two Analytical Reasoning sections of an administration of the GRE have eight
passages with 38 items. We chose four passages for which the data was complete
and which seemed likely to be dimensionally distinct. These four passages have a
total of 19 items with numbers of items/passage being 5, 4, 4, and 6. The number
of examinees we used was 2477. DETECT was maximized at four clusters with the
maximum DETECT value being 8.34 x 1073, Strikingly, the four clusters found
by DETECT corresponded exactly to the items associated with each of the four

passages.

Simulated Data Analysis

The three parameter logistic (3PL) model is used in the generation of dichoto-
mously scored data. A 40 item test is split into several dimensionally distinct
clusters. Each cluster is unidimensional to form a simple structure test. That is,
all the items within a cluster load on one ability trait and the unidimensional abil-
ity varies over separate clusters. From unidimensional (1D) to four dimensional
(4D) cases are simulated. Table 2 gives the number of items in each dimension.
Item parameters are generated independently of items and of respective parame-

ters within an item from the normal distribution.

Table 2
Number of Iterns in the Test and
in Each Dimensionally Distinct Cluster

Number of Number of Items in
Items in Each Dimensionally
the Test Distinct Cluster
1D 40 40
2D 40 20/20
3D 40 13/13/14

4D 40 10/10/10/10
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The correlation coefficient between ability traits is one of the important fac-
tors to determine the extent of multidimensionality. In this simulation study, six
different values, 0.3, 0.5, 0.7, 0.8, 0.85, and 0.9, are employed as the correlation co-
efficients among ability traits generated from the multivariate normal distribution.
In each simulation model all possible pairs of ability traits have identical corre-
lation coefficients. 6000 response vectors are generated per model, and then the
data are cross validated with 3000 examinee responses used for constructing item
clusters and the other 3000 examinee responses used for calculating DETECT.
Note that all the values of DETECT presented in this paper are multiplied by 100
for ease of presentation.

The values of DETECT are displayed in Table 3 for the unidimensional sim-
ulated data with the increasing number of clusters up to 5. As expected, all 5
DETECT values remain fairly small.

Table 3
DETECT in the Unidimensional Case

Number of Clusters
1 2 3 4 5
1D 0.0000 0.0340 0.0421 0.0524 0.0342

Table 4 shows DETECT,, values for the two, three, and four dimensional
cases at the different correlation coefficients. Notice that DETFECT is maximized at
the correct dimensionally-based cluster partitions in all these cases. It is interesting
to observe that the size of DETECT s is a function of correlation coefficient. For
example, the smaller the correlation coefficient, the larger DETECT 4., implying
larger amounts of lack of unidimensionality. In all cases when the traits are highly
correlated, there exists less multidimensionality revealing smaller DETECT az-
Also it is noteworthy that the size of DETECT 4, in Table 4 roughly explains
the strength of multidimensionality of the data.

Table 4
DETECT 4. in the Two, Three, Four Dimensional Cases
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Correlation Coefficient
0.3 0.5 0.7 0.8 0.85 0.9
2D 2.8446 1.7669 0.9105 0.8155 0.5224 0.4401
3D 2.0013 1.5984 - 1.0471 0.6417 0.4472 0.3706
4D 1.5148 1.1825 - 0.7834 . 0.4424 0.3077 0.2748

4. Closing

The estimated conditional covariance based index DETECT for assessing the di-
mensionality structure of educational /psychological test data is defined and investi-
gated extensively in order to discern its properties. Through analyses of simulated
data, DETECT has been shown to display effective performance in identifying the
number of dimensions present in test data as well as in identifying the items con-
tributing to each dimension in the case of approximate simple structure and both
the mixed and approximate simple structure cases for two dimensional data. DE-
TECT has been shown to function effectively on identifying the paragraph-based
items if a verbal test as producing separate dimensions. Also it quantifies the lack
of unidimensionality of the data.

Recently, a theoretical justification for DETECT is made by defining its the-
oretical analogue, called theoretical DETECT (see Zhang and Stout, 1995). We
can see that under certain reasonable conditions, the theoretical DETECT will
be maximized at the correct simple structure cluster partition of the test items
with the number of clusters in this partition corresponding to the number of di-
mensions of the test, for example, the clusters corresponding to items associated
with the distinct paragraphs of a reading comprehension test. The properties of
this theoretical DETECT are under further investigation. More investigation on
the asymptotic behavior regarding DETECT is also planned for a future study
as well as additional simulations to study the performance of DETECT when the

dimensionality is at least three and approximate simple structure does not hold.
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