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Numerical Simulations of Nonlinear Waves
Generated by Submerged Bodies

Kang Kuk-Jin"
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A fundamental study for the numerical scheme to simulate unsteady nonlinear waves
by solving Euler equations is presented. First, a conservation form and a
non-conservation form of the Euler equations with a free surface fitted coordinate system
are compared. Next, a time splitting fractional step method and an alternating direction
implicit(ADI) method for the time integration are compared. For the comparative study,
flow calculations around a bottom bump in a channel and a NACA 0012 hydrofoil in a
flume are performed. The results show that the ADI method with a third order upwind
differencing scheme is very efficient in reducing the computing time with keeping the
accuracy. And, there is no distinct difference between two expression forms except that
the non-conservative form shows faster wave propagating velocity than the conservation

form. Some results are compared with experiments and show good agreement.
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1. Introduction

Flows with free surfaces remain as one of
the most interesting problems in fluid
mechanics and very important in the ship
hydrodynamics. Up to now, many numerical
schemes to solve the free surface problems
by means of solving the Euler or Navier-
Stokes equations have been developed.
However, there are still more difficulties to
be overcome for the treatment of free
surface boundary condition, especially the
turbulence condition. In the present paper, a
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fundamental study to simulate unsteady
nonlinear waves is investigated for the
development of an accurate and efficient
numerical scheme to solve Euler equations.

The governing equations are the
two-dimensional Euler and continuity
equations which are  written in a
conservation form and non-conservation

form. Body-fitted coordinates and an
Eulerian moving grid system are used to fit
the body and the deforming free surface
boundary. Velocity and pressure components
of are evaluated at the staggered grid
system. A time splitting fractional step
method and an alternating direction implicit
(ADI) method are wused for the time
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integration. For the comparative study, flow
calculations around a bottom bump in a
channel and a NACA 0012 hydrofoil in a
wind tunnel and a flume are performed at
each. Computational results for the latter are
compared to the experiments by Gregory[l]
for the wind tunnel and Duncan[2] for the
flume.

2. Numerical procedure

2.1 Governing equations
Two-dimensional Euler equations and the

equation of continuity are expressed in a

nondimensionalized form as follows;

(1) Continuity equation
du; _
Hx 0 §))
(2) Momentum equations
QO Conservation form
3 u; 9 (uiu;) ¢

at + ax,- =" ax,- @

O Non-conservation form

duwp 0w _ _ 94 -

at 7 9x; dx;

The x direction is positive towards the
right-hand side and y is positive upwards.
The free stream velocity vector is parallel to
the x axis and points in the same direction.
All  lengths and velocities are non-
dimensionalized by a characteristic length L
and the free stream velocity U,, respectively.

The pressure ¢ is the static pressure p
minus the hydrostatic component -—y F,,'2

and can be expressed as ¢=p+—1:,v—f,

U,

where F, = Vel is the Froude number

and g is the gravity acceleration constant.
The pressure variable ¢ is nondimensionalized
by o Ul

The governing equations in Cartesian
coordinate system are transformed into the
body-fitted coordinates system, (&;, ),

t = r as follows:
(1) Continuity equation

J;-aa—e,-(Af.u,,)=o @

(2) Momentum equations

O Conservation form :

dw 3 ([, o8&’
Fge e e

— 0 i ok
- ae;(Ak6x¢)

+A’,u,-ul,}

O Non-conservation form :

au,-

du; _ s 3¢
s 5 O]

ae’l ae’

+y;

. . N
where, A, =J-b,, af= ———7:;

b, = %S‘ = '-]f (a;ixapt
J= d; (g;%a,) = det(a',)
Uj= (Laet_l +b§'

u)

2.2 Computational schemes

(1) Time splitting fractional step scheme

The momentum equations can be
expressed in explicit form for velocity and
implicit form for pressure as follows:
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QO Conservation form

W —ul _ 1 AF 1 8QF
ot J ag’ J ag’
where, n = time step, At = time increment

F;=]u;(% +bfu,,)=]u,-U,~ (8)

Q.= (A, 8% ¢) ©)

O Non-conservation form :

nitl ” ”
i — i _ dui ;i 9™}
Y, U?ae" b; 7 &7 10

The general vector form of the above
equations can be written as follows:

s+l .n
_q_A_t_g_ = —vF"—vg¢"! (1D

" =g"+ A" — At-V(8d) (12

where, q=(:), "l =g"+ 8¢ (13)
Agt= —AL-(VF" 4+ vé™) (14)

The solution procedure is as follows:
(a) Intermediate velocity calculation
a=4q"+ 2q" (15)
(b) Velocity correction with & ¢™
"= q— At-v(84™) (16)

{c) Pressure correction with Vg™

~g_ a7

8¢" = _ﬁ’ At

34" =5¢"+ 54" (18)

(b) and (c) are repeated until | 84" | € .
The maximum iteration number m is
confined to 20 and & =107° is used as the

pressure convergence criterion for one time
step.

(2) Alternating direction implicit(ADI)
scheme
The implicit form of the momentum
equations also can be written as eq. (12), but
eq. (14) is replaced as follows:

AQ"= — At (VF*™ 4+ vé®) (19)

Then, Ag" is solved by the ADI method

[31. And the following procedures are as
same the explicit scheme.

The pressure and the metric coefficients
are approximated by the second-order central
difference scheme. And the -convective

terms are discretized by the third-order
upwind scheme. The grid system is
generated by  Steger's method[4]. A

one-block and a two-block H-grid topology
are used for the flow calculation around the
bottom bump and the NACA 0012 hydrofoil
at each. Grids move vertically in an Eulerian
manner.

3. Boundary Conditions

3.1 Body boundary condition
The Euler solver requires the free—slip
condition on the body boundary as follows:

U =0 (20)

That is, the normal velocity component ( V;)

should be zero and the tangential velocity
component (U;) is set to be equal to the most

adjacent one (U;) on the body. Here, U and
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V are contravariant velocity vectors and
calculated as follows:

U= ué .+ vé,
(1)
V= u7x+ v7y

From these relations, velocity components
(%, v1) on the body are calculated as

follows:
Ve
up = (uyy = vx,)a/ (97 = 5= %2110

y
v = “1(‘;:")1

3.2 Free surtace boundary condition

The inviscid free surface conditions consist
of the following two conditions. One is the
dynamic condition which means that the
pressure on the free surface is equal to the
atmospheric pressure. For the inviscid case
this is expressed as

¢=po+_-h_

Fax on y=h (23

where P, is atmospheric 'pressure (assumed

to be 0 here) and y= A(x; 0 is the free
surface location. The other is the kinematic
condition which means the fluid particles on
the free surface keep remaining on it, and
written as follows;

Ok ok
ot +“ax

The free surface shape is updated by the
following eq. )

—v=0 (29)

B = p"+ At (v—wuhe £,)" (25)

From eq. (25), the
equation is derived.

following implicit

hn+l + a-u"“h’é“ = h* + AL vn+1 (26)
where, ¢ = At &,

Applying a 3rd-order upwind differencing
scheme to eg. (26), the following
penta—diagonal matrix is obtaind.

ahiytbhiytchi+dhy+ehi,=aq

27
where,
a=5 (utld), b= — & Qu+ld),
c=1+51ld, d=-F(2u-lu),

e=fL2(lui—u), at=h"+ at-v*+!

The 2nd-order central differencing scheme
is used for the & % Thus, the wave height

of the (n+l)st time step is calculated by
solving eq. (27). The velocity on the free
surface is extrapolated from inside in such
way that the velocity gradient in the
normal direction is zero.

3.3 Other boundary conditions

Uniform flow and undisturbed free surface
condition are imposed at the inflow boundary.

Zero-extrapolation method is used for the
velocity and pressure at the outflow boundary.
In addition, the following artificial wave
damping method[5] is used to prevent the
reflection of waves from the outflow boundary
to the solution domain.

= (B + At (v—uhbs &))"
(28)
J 1+ At 7]
where,
r(0) = A(E=EL), if xg<x<x, (20)

Xo— X4

where A is a constant that controls the
amount of damping (A=10 is used here) and
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X, is the x-coordinate of the outflow

boundary. And X, is defined as
2= %,— 2n F,} (30)

4. Computational results

4.1 Bottom bump calculation

For the comparison of the three numerical
schemes, numerical simulation of the waves
generated by a bottom obstacle in a uniform
flow was carried out. Hinatsu[6] showed the
similar results about the same ploblem for the
validation test of FDM scheme. The
characteristic length L is taken as the water
depth 1.0 while the height of bump is 05.
The shape of bump is sinusoidal with a
length of 4, and the length of the fluid
domain is taken as 32. The free slip condition
is used at the bottom boundary. The Froude

number F, is taken as 1.0 and the time
increment Al is 0.01 for the FVM and the

FDM, and A1 is 0.1 for the ADI scheme.
Figure 1 and 2 show the wave propagating
patterns up to t=20. The results show
good agreement with the Hinatsu’s[6]. And
there is no distinct difference among them
even if ADI scheme take 10 times larger
time increment than the others. However,
ADI scheme needs much more iteration
numbers to obtain divergence-free velocity
field for one time step than the others.

4.2 NACA 0012 hydrofoil calculation

The characteristic length L is taken as the
mid-chord length of the NACA 0012 hydrofoil.
(1) without free—surface

Flow calculation is performed at §6°
incidence angle, which was tested in wind
tunnel by Gregory[ll. The grid system
(ixfj=114x63) with the minimum grid
spacing  AXmpn = 0.001, Aygn = 0.003 is

used for the calculation. The slip boundary
condition is used at the top and bottom

boundary, and A?=0.0005 for the FVM

and the FDM, and Af?=0.005 for the ADI
scheme. Figure 3 shows that there is very
small difference at the pressure peak zone.
It shows good agreement with the
experiments.

(2) with free~surface

Flow calculation is performed at 5°

incidence angle, which was tested in flume
by Duncan[2]. The initial computational
domain is taken as —~7.0=x<8.0,
—1.8961 =y=0.0. The leading edge is

located at x/L=-0.25. Pressure is assumed
to zerc and uniform flow condition is imposed
on the bottom boundary. The minimum grid
spacing AXyyp =0.001, A ¥4, =0.003 and

A1=0.0005 are used for the calculation.

For the grid dependency check, five cases
of equal grid sizes(Ax=0.02, 0.03, 0.05, 0.07,
0.1) are tested for three wave lengths after
the trailing edge toward the positive &
~direction. Calculations are carried out at
F,=0567 and d/L=1.034, where d means

the submerged depth.

Figure 4 shows the calculated wvelocity
vectors and pressure contours around the
foil at t=30. Figure 5, 6 show the
convergence history of the pressure drag

force coefficient Cpr, the lift force

coefficient C; and wave profile. From the

Figure 6, it can be found that the solution
was converged near t=25. Figure 7 shows
the comparison of the calculated wave
profiles together with the experimental data
by Duncan. Fine grid systems show the
more accurate wave profile, and the grid
size Ax=0.03 is small enough for the
accurate wave calculation. From these
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results, it is found that the grid resolution
has effect on the accuracy of the wave
calculation and more than 50 grid points are
necessary for one wave length to obtain the
accurate wave profile. Hereafter, the grid
size Ax=0.03 is used for all calculations.
Figure 8 shows the compariscn of the
calculated wave profiles at various
submerged depths. It is found that the
breaking wave starts to occur near
d/L=0951 at F,=0.567, where Duncan[2]

showed that the transition from the steady
non-breaking wave to the steady breaking
wave exists there. Two kinds of wave
breaking process are observed in the
caculation, namely the first or second wave
crest starts to break first. But there is no
description on this phenomenon in the
experiment.

5. Conclusions

A fundamental study for the numerical
scheme to simulate unsteady nonlinear waves
by solving Euler equations was performed
and the following summary can be made.

(1) The ADI method with a third order
upwind differencing scheme is efficient in
reducing the computing time with keeping
the accuracy.

(2) No distinct difference find out between
two equation forms except that the FDM
shows faster wave propagating velocity than
FVM.

(3) The calculated results show good
agreement with the experimental data.

(4) More than 50 grid points per one wave
length are required to obtain the accurate
wave profile for a submerged body.

(5) Further extensions of this method are
the inclusion of viscous effects and
generalization to three dimensions, etc.
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[FVM. F.8.(imp.}. 3rd Upwind, Fn=1.0, di=0,01, dp<1 .09-4] [FDM. F.S.0imp.), 3rd Upwind, Fn=1.0, dt=0.01, dp<1.0e-ﬂ

Commer]  weme

Fig. 1 Comparison of wave profile (FVM, FDM)

[ADL, F.5.(1mp.}, 3rd Upwind. Fn=1.0. d1=0.01, dp<1.0e-4] {ADI, F.S.(Imp.), 3rd Upwind, Fn=1.0, d=0.1, dp<1.00-4]

e R

Fig. 2 Comparison of wave profile (ADI : At = (.01, 0.1)
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Fig. 7 Wave profiles for various grid sizes Fig. 8 Wave profiles for various sub. depths



